Prerequisites for Therapeutic Studies In Humans & Phase I Trials

Philippe Bedard, MD FRCP(C)

Princess Margaret Cancer Centre Division of Medical Oncology & Hematology Bras Drug Development Program

Disclosures

Research Funding (to Institution)

Astra Zeneca, BristolMyersSquibb,
 Genentech/Roche, GlaxoSmithKline, Merck,
 Nektar, Novartis, PTC Therapeutics, Sanofi, Seattle
 Genetics, Servier, SignalChem Life Sciences,
 Zymeworks

- Honoraria/Consultancy (to Institution)
 - Novartis, Pfizer, Roche, Sanofi

Overview

- Introduction to how new cancer drugs are tested in the clinic
 - Be acquainted with the preclinical studies required for an investigational drug therapy and the basis for selection of starting dose
 - Understand the purpose of phase I trials
 - Be familiar with concepts of dose limiting toxicities (DLTs) & recommended phase II dose (RPTD)
 - Discuss types of trial designs used determine the RPTD

The Traditional Drug Development Paradigm

Phase I	Phase II	Phase III	
○ Safety, tolerability	 Efficacy observed in 	• Meaningful benefit	
○ Pharmacokinetics	selected tumor	randomized setting	
• Pharmacodynamics	TTP, PFS	standard e.g. OS	
 Preliminary antitumor activity 			

Prerequisites for Phase I

- ☑Unmet clinical need
- ☑Biological plausibility (target validation)
- ☑ Expectation of benefit (preclinical activity)
- ☑Reasonable expectation of safety (preclinical toxicology)
- ☑ Basis for selection of starting dose

The Drug

- Target
- Mechanism of Action
- Pre-Clinical Efficacy
- Pre-Clinical Safety
- Biomarker

The Target

- Biological Plausibility
 - Knock-in/Knock-out experiments
 - Role in disease pathogenesis
 - ie. Bcr-Abl, c-KIT, BRAF, etc
 - Expression in clinical specimens
 - Tumor types, prevalence, tissue specificity
 - All comers vs enriched design
 - Resistant vs naïve population
 - Prognostic/Predictive
 - Prior attempts to drug target

The Drug

- Production
 - Good Manufacturing Practice (GMP)
 - Sufficient quantities & practical dosage forms
- Chemistry
 - Small molecule, antibody, anti-sense, peptide, etc
- Absorption (PO/IV)
- Distribution (tissue concentration, reservoirs, BBB)
- Metabolism & Excretion
 - CYP enzymes, metabolites, route of excretion

The Drug

- Pharmacokinetic (PK) Profile
 - Maximum concentration (C_{max}), Exposure (AUC), Half-life (T_{γ_2}), Distribution
 - Accumulation & multiple dose effects
 - PK-toxicity association
 - PK-efficacy association
- Impact on Trial Design
 - Route & schedule of administration
 - Eligibility criteria (renal & hepatic function)
 - Concomitant meds
 - PK/PD sampling time points

PK: Time x Concentration

Pre-Clinical Efficacy

- No mandated studies
 - Up to the company and investigators
- Not predictive of success
 - But high negative predictive value
- What to look for
 - Multiple xenograft models (>2)
 - Models with established tumors +/- mets before treatment (if applicable)
 - Regression rather than growth delay
 - IV or po administration
 - Dose response effects (and plasma drug levels)

Lululizumab: Novel IO Agent

A mAbs: 10 mg/kga

Syngeneic Mouse Model

Pre-Clinical Toxicology

- Typically a rodent (mouse or rat) and non-rodent (dog or non-human primate) species
 - Monoclonal antibodies require cross-reactive species (ie. primate)
- Few animal organ specific toxicities predict for human toxicities
 - Myelosuppression and gastrointestinal toxicity more predictable
 - Hepatic and renal toxicities large false positive

Starting Dose Considerations

LD10 (Lethal dose 10)

• Dose that is lethal in 10% of animals

NOAEL (NO observed adverse event level)

• The highest tested dose that has no harmful or adverse event in the animals

TDL (Toxic dose low)

• The lowest tested dose that caused any toxic effect in the animals

Minimum anticipated biological effect level (MABEL)

• Often used as starting dose for antibodies

Species	To convert animal dose in mg/kg to dose in mg/m ² , multiply by Km below:	To convert animal dose in mg/kg to HED in mg/kg, either:	
		Divide animal dose by	Multiple animal dose by
Human	37	-	-
Child (20 kg)	25	-	-
Mouse	3	12.3	0.08
Hamster	5	7.4	0.13
Rat	6	6.2	0.16
Ferret	7	5.3	0.19
Guinea pig	8	4.6	0.22
Rabbit	12	3.1	0.32
Dog	20	1.8	0.54
Primates:			
Monkeys	12	3.1	0.32
Marmoset	6	6.2	0.16
Squirrel monkey	7	5.3	0.19
Baboon	20	1.8	0.54
Micro-pig	27	1.4	0.73
Mini-pig	35	1.1	0.95

Biomarker Assays

- Impact on Trial Design
 - Will it provide useful information (proof of mechanism or proof of concept)
 - Increased complexity & cost
 - Limited patient numbers
 - "Clinical Grade" assay
 - Patient selection
 - Serial tumor biopsies vs "surrogate" tissue
 - All comers vs expansion only

Objectives of Phase I Trial

- Primary:
 - Identify dose-limiting toxicities (DLTs) and the recommended phase II dose (RPTD)
- Secondary:
 - Describe the toxicity profile of the new therapy
 - in the schedule under evaluation
 - Assess pharmacokinetics (PK)
 - Assess pharmacodynamic effects (PD) in tumor and/or surrogate tissues
 - Document any preliminary evidence of objective antitumor activity

Patient Population

- "Conventional" eligibility criteria- examples:
 - Advanced solid tumors unresponsive to standard therapies or for which there is no known effective treatment
 - Performance status (e.g. ECOG 0 or 1)
 - Adequate organ functions (e.g. ANC, platelets, Creatinine, AST/ALT, bilirubin)
 - Specification about prior therapy allowed
 - Specification about time interval between prior therapy and initiation of study treatment
 - No serious uncontrolled medical disorder or active infection

Patient Population

• "Agent-specific" eligibility criteria- examples:

Specific organ exclusions:

- Cardiac function (e.g. QTc ≥450-470 ms, LVEF ≤ 50%, etc), acute MI/CVA if preclinical cardiac risk
- Recent hemorrhage or ongoing anticoagulation for agents with bleeding risk (ie. antiangiogenic)
- Diabetes or fasting plasma hypergylcemia ≥ 7.0 mmol/L for agents with risk of hyperglycemia (ie. PI3K/AKT)

Prohibited medications if significant risk of interaction with study drug

Prior exposure to drug in same class

Dose Limiting Toxicity (DLT)

- Toxicity that is considered unacceptable (due to severity and/or irreversibility) and limits further dose escalation
- Specified using standardized grading criteria (ie. CTCAE)
- DLT is defined in advance prior to beginning the trial and is protocol-specific
- Typically defined based on toxicity seen in the first cycle

CTCAE Criteria

- Grade 1 = MILD
- Grade 2 = MODERATE
- Grade 3 = SEVERE
- Grade 4 = LIFE-THREATENING
- Grade 5 = FATAL

DLT Definition – Intermittent Dosing

- Generally can tolerate higher degrees of toxicity because the interval between treatments allows for rest and recovery
- Examples:
 - Grade 3 or worse non-hematologic toxicity despite supportive measures
 - ANC < 0.5 x 109/L for > 5 or 7 days
 - Febrile neutropenia (ANC < 1 x 109/L, fever > 38.5PC)
 - Platelets < 25 x 109/L or thrombocytopenic bleeding
 - Inability to re-treat patient within 2 weeks of scheduled treatment

DLT Definition – Continuous Dosing

- Threshold for DLTs is <u>lower</u>
- Some Grade 2 toxicities may be unacceptable and intolerable due to their persistence and lack of time period for recovery
- Examples:
 - Grade 2 intolerable or worse non-hematologic toxicity despite supportive measures
 - Recurrent Grade 2 intolerable toxicity after interruption
 - Grade 3 or worse hematologic toxicity
 - Inability to complete a pre-specified percentage of treatment during the cycle due to toxicity (e.g. missing 20-25% of doses)

Time to first toxicity

EORTC The future of cancer therapy

Key Principles of Phase I Trials

- Start with a safe starting dose
- Minimize # of pts treated at sub-toxic doses
- Escalate dose rapidly in the absence of toxicity
- Escalate dose slowly in the presence of toxicity
- Expand patient cohort at maximum tolerated dose

Recommended Phase II Dose

- Recommended phase II dose (RPTD or RD):
 - Dose associated with DLT in a pre-specified proportion of patients (e.g. < 33%) – dose that will be used in subsequent phase II trials

Traditional Phase I Testing Paradigm

Classical 3+3 Design

Problems with 3+3 Dose Escalation Design

- Wide confidence intervals around recommend phase II dose
- Patients treated in early dosing cohorts have very low drug exposure
- High risk of overdosing in later cohorts
- Dose escalation phase can be protracted

Accelerated Titration Design

- First proposed by Simon et al (J Natl Cancer Inst 1997)
- Several variations exist:
 - usual is doubling dose in single-patient cohorts till Grade 2 toxicity
 - then revert to standard 3+3 design using a 40% dose escalation
 - intrapatient dose escalation allowed in some variations
 - More rapid initial escalation

Modified Toxicity Probability Interval (mTPI) Design: An Adaptive Design

Ji Y and Wang S-Y. J Clin Oncol 31: 1785-1791, 2013

Estimated MTD Based on Bayesian Logistic Method (2-parameter evaluation with over-dose control)

Limitations of Phase I Trials

- Chronic or cumulative toxicities usually cannot be assessed
- Uncommon toxicities will be missed
- Low likelihood of therapeutic benefit
 - Overall response rate = 5-10%
 - Majority of responses occur at 75-125% of recommended phase II dose
 - Low risk of toxic death (<0.1%)

Shifting Paradigm of Drug Development

Enrichment Strategies

• Phase I trials with molecular enrichment

Vemurafenib (BRAF inhibitor) Crizotinib (ALK inhibitor)

• Operational challenge of identifying patients with rare genomic alterations

"Seamless" Phase I/II Designs

Signal-Finding, Multiple Cohort Expansions

Common Design with Immune Checkpoint Inhibitors

Cancer A Cancer B Cancer C Cancer D Cancer E Cancer F Cancer G Cancer H

Courtesy of Lillian Siu

Pros and Cons of Seamless Phase I-II Trials

Pros:

- Efficiency, time-saving
- Compelling data can lead to accelerated regulatory approval
- Frequent investigator-sponsor communications are critical to ensure safety

Cons:

- Often huge studies with 100s-1000s of patients – potentially exposing them to subtherapeutic or toxic doses
- Increased complexity often with multiple amendments
- Challenges in disseminating new safety information to investigators, IRBs, regulators in a timely manner
- Objectives, endpoints and statistical analysis plans often lacking
- Diluted clinical experience due to large number of participating
 sites

Adapted in part from FDA Draft Guidance: site

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformati on/Guidances/UCM616325.pdf 37

Take Home Messages

- Phase I trials are the interface between lab discoveries and clinical translation
- Patient safety/well-being is paramount
- Most drugs follow the MTD/RPTD paradigm
- Biomarker studies are essential to evaluate new cancer drugs
- Phase I trials are increasingly complex and require good team science