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Abstract

Introduction—Molecular genetic analyses of lung adenocarcinoma have recently become 

standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to 

enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. 

Technical aspects of testing, and clinicopathologic correlations are presented.

Methods—Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, 

MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or 

sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 

14 institutions.

Results—1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes 

analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology 

specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical 

specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and 

ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations 

were highly associated with female sex, Asian race, and never smoking status; and less strongly 

associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. 

ALK rearrangements were strongly associated with never smoking status, and more weakly 

associated with presence of liver metastases. ERBB2 mutations were strongly associated with 

Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of 

which involved one or more of PIK3CA, ALK or MET.

Conclusion—Multi-institutional molecular analysis across multiple platforms, sample types, and 

institutions can yield consistent results and novel clinicopathological observations.

Keywords

lung adenocarcinoma; mutation; FISH; genotyping; LCMC

INTRODUCTION

Molecular genetic testing is a central component of pathological analysis for several types of 

cancers. Although results formally reported in the medical record must be generated in 

laboratories subject to Clinical Laboratory Improvement Amendments (CLIA) certification, 

the degree of inter-laboratory variation with regard to molecular pathology methods and 

results remains poorly characterized outside of laboratory proficiency testing and studies 

designed specifically to evaluate concordance. Molecular testing in patients with advanced 

lung cancer and other solid tumors presents unique challenges. The use of minimally 

invasive procedures to obtain tissue for diagnosis often limits available tumor material for 

molecular testing. Variable pre-analytic methodology introduces the potential for poor 

nucleic acid preservation in formalin-fixed, paraffin-embedded (FFPE) tumor samples. 

Furthermore, the continuing identification of new driver mutations can lead to repetitive 

testing of the same sample exhausting the material available.

Molecular genetic testing became central to the clinical management of advanced lung 

adenocarcinoma (ACA) after the discovery of a strong association between activating EGFR 
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mutations and clinical response to targeted EGFR tyrosine kinase inhibitors (TKIs) in 

2004 1-3. This was followed by the identification of rearrangements of the anaplastic 

lymphoma kinase (ALK) gene in lung ACA in 2007, which are in turn uniquely sensitive to 

treatment with ALK kinase inhibitors 4,5. EGFR mutation analysis and ALK fluorescence in 

situ hybridization (FISH) are now guideline-recommended standard-of-care at the time of 

diagnosis for advanced lung ACA to inform the initial systemic treatment 6. Ongoing 

recognition of potentially targetable oncogenic drivers in lung ACA 7 indicates a need for 

efficient multiplexed analyses. Indeed, many institutions in the US and worldwide have 

implemented routine analyses of multiple genes in lung ACA 8-10. A growing number of 

commercial and academic institutions are implementing next generation sequencing (NGS) 

of large gene panels as a more efficient approach to molecular testing across multiple cancer 

types 11,12, 13.

The Lung Cancer Mutation Consortium (LCMC) was established in 2008 as a multi-

institutional program investigating the frequency of selected oncogenic drivers in lung ACA 

and using the results to treat the enrolled subjects with targeted therapies, either as part of 

standard clinical care or on investigational protocols. Fourteen institutions participated in the 

LCMC and either performed testing locally or utilized another LCMC site. Analytical 

methods at testing sites were left up to at each institution, as long as they met CLIA 

standards.

The primary results of the LCMC study have recently been reported. 14 Here we provide 

additional information on methods used at the different institutions, results of blinded 

proficiency testing, effects of sample type and testing platform on assay success and 

mutation detection rates, and validation of mutations identified in lung cancer specimens 

with more than one putative driver alteration. Further, we examine sample failure rates and 

present a correlation between the presence of oncogenic driver mutations and 

clinicopathologic findings.

MATERIALS AND METHODS

Patient Recruitment and Enrollment

Fourteen clinical sites participated in the LCMC (Supplemental Table 1). All participating 

sites obtained local IRB approval for participation in this study. Patients with stage IV or 

recurrent lung ACA; SWOG performance status of 0, 1, or 2; expected survival of >6 

months; and adequate tissue for molecular analyses were eligible for entry on this study. 

1,542 patients were enrolled, and 1,102 were deemed eligible. The most common reason for 

ineligibility was inadequate pathologic material to complete the multiplexed testing (n=286 

of 440 ineligible; 65%). Epidemiologic and clinicopathologic data was collected on these 

subjects, including age, sex, race, smoking history, stage at diagnosis, metastatic sites, and 

survival. 14

Pathology evaluation

Anatomic pathologists at each institution confirmed a diagnosis of lung adenocarcinoma, 

assessed tumor content, and determined specimen adequacy based upon analytic sensitivity 
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of their testing platform (Table 1). Samples were enriched for tumor content using manual 

microdissection. Central confirmation of lung ACA diagnosis was based on review of an 

hematoxylin and eosin (H&E) stained histology slide or a scanned image (Aperio®, Vista, 

CA), by IIW, JF, or WAF. At the time of central review, expert pathologists enumerated 

percentage of each histologic pattern, including lepidic, acinar, papillary, micropapillary, 

solid and variants (mucinous, colloid, fetal, and enteric, as appropriate), according to current 

criteria. 15

Among the 1,102 eligible patients, 1,015 were confirmed as ACA histology and two as 

adenosquamous carcinoma by central pathology review. In 85 cases, slides were not 

provided for central review. Among cases with confirmed histology, at least one molecular 

assay was performed in 1,007 cases. Small mutations were defined as single nucleotide 

variants and small insertion-deletion (indel) mutations. Testing for at least one small-

mutation gene (8 genes, see below) was performed for 989 cases, ALK FISH testing was 

performed in 926 cases, and MET FISH testing in 833. The 10-marker panel including small 

mutation and FISH testing was completed in its entirety for 733 patients.

Mutational Analyses

The vast majority of the mutation analyses were performed in six diagnostic laboratories, 

using methods summarized in Table 1. The complete panel of small mutations consisted of 

four small indels and 93 point mutations occurring in 8 genes (AKT1, BRAF, EGFR, 

ERBB2, KRAS, MAP2K1, NRAS, PIK3CA) (Supplemental Table 2). Due to variability in 

testing platforms, not all mutations were evaluated at all sites, but every site tested at least 

half of the complete set of mutations.

Three different methodologies were used for genotyping, and the analytic sensitivities for 

the major testing laboratories (defined as those testing ≥ 4% of the total cases) are shown in 

Table 1. The methods for all mutational analyses have been previously published 15-17. 

Briefly, SNaPshot® (Life Technologies, Grand Island, NY) is a multiplex PCR assay 

followed by single-base primer extension. Sequenom MassARRAY (Sequenom, San Diego, 

CA) is a multiplex PCR assay followed by single base extension sequencing and matrix-

assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). 

PCR followed by sizing assay for EGFR exons 19 and 20 and ERBB2 exon 20 using 

fluorescently-labeled primers and capillary electrophoresis was used to detect the indel 

mutations for both SNaPshot and Sequenom 17. For bidirectional Sanger sequencing, assay 

sensitivity was enhanced using peptide nucleic acid clamps (PNAs) to suppress 

amplification of the wild-type allele at mutation hotspots in EGFR, KRAS, and BRAF. PNA 

clamp design for EGFR and KRAS has been previously described 18,19; clamp design for 

BRAF is available upon request. Positive small mutation findings were confirmed by repeat 

testing in most cases, DNA quantity permitting, for all three methodologies.

Fluorescence In Situ Hybridization (FISH) Analyses

ALK FISH assays were performed with the analyte specific reagent (ASR) LSI ALK Dual 

Color, Break-Apart Rearrangement Probe or the IVD Vysis ALK Break Apart FISH Probe 

Kit (Abbott Molecular). The MET FISH assays were performed with laboratory-developed 
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reagents (DNA insert encompassing MET from the RP 11-95I20 BAC clone and a 

centromere 7 control probe) or with commercial reagents (MET (Texas Red) / CEP7 (D7Z1) 

Green from Cytocell; MET (ZyGreen) / CEP7 (ZyOrange) from ZytoVision; Vysis MET 

SpectrumRed / CEP 7 (D7Z1) SpectrumGreen from Abbott Molecular; or Poseidon™ 

Repeat Free™c-MET (7q31) PlatinumBright550 / SE 7 PlatinumBright495 from Kreatech). 

All probe sets were validated to identify copy number changes in MET on 7q31.2 and used a 

centromere 7 control probe to define the relative copy number alteration.

FISH reagents were validated internally at each of the six diagnostic laboratories that 

performed testing as part of the LCMC (Supplemental Table 1). Hybridization followed 

standard procedures and signals were evaluated in at least 50 tumor nuclei per specimen; 

samples containing fewer than 50 tumor nuclei were considered inadequate. ALK 

rearrangement was defined by split 3’ALK - 5’ALK signals (separated by a gap ≥2 times the 

signal diameter) or an isolated 3’ALK signal (no 5’ALK signal) in ≥15% of tumor cells. 5 

MET amplification was considered to be present when the MET / centromere 7 ratio was > 

2.2.

Inter-institutional Assay Validation and Proficiency Testing

The validation cohort included mutant cell lines and de-identified clinical specimens of 

known genotype collected at one site; extracted DNA was shared with participating 

laboratories (Supplemental Table 3). Mutation assays for which no corresponding samples 

suitable for cross-validation between laboratories were available were validated 

independently by each participating laboratory, using synthetic oligonucleotides harboring 

the mutation of interest. Control samples for FISH assay validation consisted of a panel of 

MET-amplified and EML4-ALK fusion positive lung ACA, provided to each participating 

laboratory by a single site (Supplemental Table 3).

Proficiency assessment was performed by individual LCMC laboratories on an ongoing 

basis, in compliance with CLIA guidelines. In addition, we designed a proficiency testing 

protocol that was carried out at the onset of the study, to serve as extra measure of quality 

assurance, and to internally document the reliability and accuracy of the tests performed by 

participating laboratories. One site provided five blinded samples derived from archival 

tumor containing a minimum of 200 ng of DNA to the other centers and evaluated their 

mutation results. FISH proficiency assessment consisted of the blinded evaluation of four 

lung adenocarcinoma surgical cases, two each for MET gene amplification and ALK gene 

rearrangement. One unstained 5-micron section and paired hematoxylin and eosin-stained 

slide per FISH assay was submitted to participating laboratories for analysis.

Confirmation of Cases with Multiple Alterations

Confirmation of FISH results in cases with multiple driver alterations was performed when 

adequate tissue was available. Confirmation was carried out by repeating the FISH assay 

and when possible by using an orthogonal technique. ALK immunohistochemistry using 

clone 5A4 (Abcam, Cambridge, MA) was applied in cases with a mutation and ALK-

rearrangement, as previously described. 20 MET copy number was confirmed using dual 

color in situ hybridization (ISH) probes to the MET locus and CEN7 with dual color open 

Sholl et al. Page 5

J Thorac Oncol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probe software (Ventana Medical Systems, Tucson, AZ). Because dual ISH has been 

demonstrated to underestimate the probe to centromere ratio as compared to FISH 21, the 

cutoff for MET amplification was defined as a MET/centromere 7 ratio of >1.8 for this 

analysis.

Database systems and Statistical Methods

Data were collected from participating institutions via entry into GeneInsight, a centralized 

web-based system.

Analyses evaluating efficiency of small-mutation testing were institution-specific, and 

represented as a ratio of total mutation calls to total number of mutations assessed on the 

relevant testing platform. Failure to complete all calls occurred due to technical failures plus 

incomplete testing for various reasons including sample insufficiency.

The Kruskal-Wallis test was utilized for group comparison of continuous variables, and Chi-

square test was used for categorical variables.

RESULTS

Subjects Studied and Overall Findings

The frequency of mutations identified in 733 completely tested lung ACA is shown in 

Figure 1, summarizing the data from our earlier publication on the LCMC experience. 14 

Note that in Figure 1, cases with two mutations are represented only once, selecting the 

mutation that primarily dictated clinical care in each patient. As a result the frequencies of 

ALK, MET, and PIK3CA alterations appear somewhat lower in this figure. (See Table 4 for 

details on doubleton mutations.)

When considering the 1007 cases with any genotyping, and including mutations occurring in 

doubletons, KRAS and EGFR mutations were seen in 25% and 22% of samples, 

respectively, and ALK rearrangement was detected in 8.5% of cases. Mutations in ERBB2, 

BRAF, PIK3CA, NRAS and MEK1 as well as MET amplification, were all seen at < 3% 

frequency. AKT1 was mutated in a single case.

Effects of assay methodology and specimen type on genetic findings

To determine whether assay methodology had an influence on mutation detection, we 

assessed results according to method of analysis, irrespective of institution. Of 813 

specimens with any genotyping performed for which specimen type information was 

available, 289 were biopsies (36%), 134 were cytology specimens, including effusions and 

fine needle aspirates (16%), and 390 were surgical resections, including primary tumor 

resections and resections of metastatic sites (48%). The small mutation completion rate was 

very high (≥ 98%) for all specimen types (Table 2), which likely reflects the effectiveness of 

pathology pre-screening to exclude cases with inadequate material. Similarly, there was no 

significant difference in the frequency of detection of small mutations according to 

specimen type, with a positive call rate of 55% for biopsies, 56% for cytology specimens, 

and 56% for surgical resections (p=0.97) (Table 2). KRAS and EGFR mutations were 
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somewhat more common in surgical resections and cytology specimens, respectively, but 

the differences were not statistically significant (Supplemental Table 4).

MET FISH testing was implemented later than other testing at some sites thereby limiting its 

overall completion rate. Thus, we focused on ALK FISH testing to assess FISH completion 

rates (Table 2). There was no significant difference in ALK FISH completion rates based on 

specimen type, with results returned on 91% of biopsies, 92% of cytology specimens, and 

95% of surgical resection specimens (p=0.14). In addition specimen type had no impact on 

the frequency of ALK positive findings (p=0.73, Table 2).

Specimen Sufficiency

Anticipating specimen adequacy for molecular testing and clinical trial enrollment is one of 

the most challenging aspects of modern clinical oncology. Several sites screened trial 

candidates for sample sufficiency prior to patient enrollment in the study, thereby reducing 

the screen fail rate among enrolled subjects. One of the limitations of our data capture 

strategy emerged at the time of data analysis, when it became clear that site to site variation 

in pre-screening practices were likely affecting the fail rate at individual institutions. We did 

not anticipate this issue in advance, and there was no pre-set procedure for pre-screening, 

and no obligation to capture and document patients who failed to meet study eligibility 

based on lack of adequate tissue. Therefore, to evaluate the percentage of samples that were 

not sufficient for these molecular assays, and eliminate site-to-site variation, we focused our 

analysis on the site with highest mutational testing volume. Of the 470 specimens of known 

specimen type submitted for testing at this site, 72 (15%) were rejected on the basis of 

insufficient tumor or being unsuitable for analysis (e.g., decalcification). Surgical resection 

specimens were significantly less likely to fail pathology screening (5% failure rate) as 

compared to biopsies and cytology specimens (26% and 35%, respectively, p<0.001, Table 

3). We acknowledge that these failure rates may be an underestimate because candidate 

patients whose tumor specimens were likely to be insufficient at the time of consideration 

for this trial may not have been enrolled.

Proficiency Testing

A project-specific proficiency testing protocol performed at the beginning of the study 

evaluated 5 specimens for mutation and 4 specimens for FISH analyses. Eight of nine 

proficiency samples were correctly scored by the participating laboratories (Supplemental 

Table 5). One of the mutation samples (DNA 36) yielded unexpected results, with different 

labs reporting distinct mutations or a technical failure. It is possible that the integrity of this 

nucleic acid was compromised during processing or shipment, and the sample was classified 

as an ungraded challenge due to the lack of consensus among testing sites. One site that 

utilized Sanger sequencing with PNAs was unable to participate because the methodology 

required more sample material than provided for proficiency testing. For the duration of the 

study, all sites engaged in proficiency assessment with blinded samples on a regular basis in 

compliance with CLIA/CAP recommendations.
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Analysis of Cases with Multiple Alterations

Twenty-seven cases (2.7% of 1007 samples with any genotyping) had multiple oncogenic 

driver mutations identified, including 14 with two small mutations and 13 with a small 

mutation and an ALK rearrangement (6) or MET amplification (9; two cases had concurrent 

ALK rearrangement and MET amplification). Of 14 cases with two small mutations, 13 

(92%) had a PIK3CA mutation in addition to another mutation, including 9 with EGFR, 2 

with BRAF, 1 with KRAS, and 1 with MEK1 mutation. One case had EGFR ex19del and 

AKT1 c.49G>A (p.E17K) mutations. All of these small mutation findings were validated by 

repeat analysis at the time of detection.

The 13 cases that had both a small mutation and a positive FISH result are presented in 

Table 4. MET amplification co-occurred nine times with a variety of other alterations 

including ALK rearrangement (2 cases) and EGFR (2 cases), ERBB2 (1 case), and KRAS (4 

cases) mutations. Replicate FISH testing and/or bright field ISH was performed in 7 of these 

9 cases, and all were validated (including 4 by ISH). In the 2 cases with both MET 

amplification and ALK rearrangement, remaining tissue was insufficient for confirmation. 

ALK rearrangement was identified with concurrent small mutations in 4 cases, three with 

EGFR mutations and one with BRAF mutation. In two cases, follow-up testing, including 

using ALK immunohistochemistry and repeat FISH, failed to confirm a functional ALK 

rearrangement (previously reported 21). In one case, an EGFR mutation was confirmed but 

insufficient tissue remained to confirm the ALK rearrangement. This patient has not 

responded to either EGFR or ALK inhibitor treatment. In another case with confirmed ALK 

and EGFR alterations, follow up information was not available.

Clinico-Pathological Associations with Specific Mutations

The prevalence of any small mutation in this cohort was higher in females, those of Asian 

race, and never-smokers (all p ≤ 0.014, Figure 2, Supplemental Table 6). There was no 

association between presence of any mutation and age or stage at diagnosis.

Multiple individual gene mutations showed significant associations with clinicopathologic 

features (Figure 2, Supplemental Table 6), many of which were expected (6). EGFR 

mutation was significantly associated with female gender, Asian race, never-smoking status, 

stage IV disease at diagnosis, the presence of bone metastases, and absence of adrenal 

metastases (all p < 0.03). In contrast, KRAS mutation correlated with smoking (p<0.001), 

older age at diagnosis (p<0.001), lower frequency of bone metastases (p=0.007), and white 

race (p=0.006). ERBB2 mutations were significantly associated with a never-smoker status 

(p<0.001) and Asian race (p=0.015). ALK rearrangement was associated with a lower age at 

diagnosis (p<0.001), never-smoker status (p<0.001) and liver metastases (p=0.028). BRAF 

mutations and MET amplification were not associated with age, smoking history, stage at 

diagnosis, race or metastatic pattern.

Approximately one-third of the specimens in the overall cohort were surgical resections. In 

this subgroup we examined associations between histologic subtype 22 and mutation. 

(Supplemental Table 7). We found no significant association between predominant 

histologic subtype and mutation, but there was a trend toward increased EGFR mutation 
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frequency in acinar versus solid-predominant tumors (50/199, 25% vs. 23/165, 14%; 

p=0.05), those two being the most common subtypes in the surgically-resected subgroup. 

When considering median percentage of each subtype within a single specimen, none of 

lepidic, micropapillary, or papillary subtypes showed significant association with EGFR 

mutation status (Wilcoxon rank-sum test). However, a higher median percentage of acinar 

subtype within a specimen was associated with EGFR-positive status (median 95% acinar in 

EGFR-mutant; median 30% acinar in EGFR-wild type; p=0.008), while higher percentage of 

solid subtype was associated with EGFR-negative status (median 10% solid in EGFR-wild 

type; median 0% solid in EGFR-mutant; p=0.005).

DISCUSSION

This study demonstrates that collaborative efforts to share protocols and technology between 

laboratories facilitate comprehensive, multi-institutional tumor mutational profiling. Despite 

the diversity of analytic approaches employed (Table 1), our results show no appreciable 

evidence of inter-laboratory or inter-platform variability in mutation detection.

Specimen adequacy is a significant clinical issue in lung cancers since minimally invasive 

diagnostic procedures are common. In this study, 1,542 patients were enrolled, and only 

1,102 (71%) were deemed eligible. The majority of ineligible subjects were due to 

inadequate pathologic material. Iterative testing often requires recutting/resurfacing (and 

associated “wasting”) of the tissue block, thus for many patients, tumor cells in the material 

were exhausted by the time all assays were implemented, and often prior to analysis by 

routine diagnostic methodology. As a result, only 733 patients had complete genotyping 

performed, representing 48% of the starting 1,542 subjects enrolled. These observations 

highlight the challenges of implementing new and labor-intensive molecular testing across 

multiple institutions and the need for careful planning in advance for tissue optimization. 

Indeed, our experience during the course of this study led many LCMC institutions to 

modify their tissue handling and diagnostic workup protocols, including modifying 

pathology requisitions to flag biopsies for genomic studies, requesting up-front serial tissue 

sections to reserve for molecular testing, and limiting immunohistochemistry analyses.

Focusing on the single site with the largest testing volume, to eliminate the effect of site-to-

site differences in screening approaches, we determined that 35% of cytology specimens and 

26% of small biopsies were insufficient as compared to 5% of surgical resections. However, 

once a specimen was deemed adequate, the sample type did not influence performance, and 

minor differences between completion rates were felt not to be clinically significant (Table 

2). Despite recently-published findings from CAP demonstrating poor inter-laboratory 

precision in determining tumor percentage based on review of an H&E slide 23, our findings 

suggest that the pathology prescreen to assess tumor percentage works well as a predictor of 

success of mutation analyses.

Although the frequencies of mutation seen here (Figure 1) are similar to previous 

publications, 24-27 they are somewhat higher overall, likely due to referral bias to the tertiary 

cancer centers making up the LCMC, and provider enrollment of patients who were thought 

more likely to harbor targetable oncogenic mutation based on clinical and demographic 
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features. This phenomenon is reflected in the unusually high frequency of women vs. men 

(60% vs. 40%), and never-smoker and former-smoker vs. current smokers (34%, 59%, and 

7%, respectively) in this cohort.

Consistent with prior reports, 28 we found that most oncogenic driver mutations occur in a 

mutually exclusive fashion. However, we identified 2.7% of cases with two or more putative 

driver alterations. PIK3CA mutations were the mutation type most commonly seen in 

combination with other alterations. PIK3CA mutations are seen in many cancer types, and 

cause activation of both AKT and mammalian target of rapamycin (mTOR), with myriad 

downstream effects.29 The co-occurrence of mutations in PIK3CA and EGFR, and PIK3CA 

andKRAS, in lung adenocarcinoma is well-established.27 Both in vitro studies and analysis 

of relapse biopsies suggest that PIK3CA activating mutations may confer resistance to 

gefitinib and erlotinib in EGFR-mutant lung adenocarcinoma.29,30 However, the clinical 

significance of these co-mutations at the time of primary diagnosis remains unclear.

The literature on co-occurrence of ALK rearrangement and other oncogenic driver mutations 

suggests that this is a rare event with unclear implications for therapy. A recently published 

large series of 1683 lung ACA tested for EGFR, KRAS and ALK demonstrated that these 

were mutually exclusive alterations. 28 However, other reports suggest that combined ALK 

rearrangement and EGFR and/or KRAS mutations may occur de novo 31,32 and in post-

crizotinib treated patients 33, raising the possibility that combined ALK and EGFR blockade 

may be effective in a rare subset of lung ACA patients. We initially identified four cases 

with an ALK rearrangement combined with another driver mutation. Two proved to be false 

positives related to apparent poor tissue preservation in one case and an atypical FISH result 

in another; these false positive cases came to light as a result of negative ALK 

immunohistochemistry. 20 Since the initiation of the LCMC study, many advances have 

been made with regard to the implementation of IHC as a screening tool for high ALK 

expression in NSCLC. Although it was not widely available and hence not widely used 

during this study, the ALK IHC screening approach has merit. These findings suggest that 

careful confirmation of dual alterations in ALK and another oncogene is warranted to 

exclude a false positive or non-functional FISH result and to ensure that patients receive 

proper therapy.

MET amplification is an established mechanism of drug resistance in patients receiving 

EGFR tyrosine kinase inhibitors, 34 and may be an adverse prognostic indicator in untreated 

non-small cell lung carcinoma. 35 Our data suggests that MET amplification, while rare in 

untreated specimens, occurs in a variety of genomic contexts. However, the limited number 

of cases in this study with dual alterations precludes analysis of differential response and 

outcomes data. The introduction of more comprehensive genomic testing into routine 

practice should help to elucidate the significance of multiple mutations for therapy selection 

and patient outcome.

The large number of patient samples evaluated in this study allowed for extensive analysis 

of mutation and clinicopathologic correlations. Our findings were largely consistent with 

existing literature, lending support to our results. However, we do acknowledge that many 

statistical tests were performed, leading the possibility of false positive findings. With this 
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caveat, our findings reinforce the known associations of EGFR mutations with female sex, 

Asian race and never-smoking status; 26,36 KRAS mutation with smoking history; and ALK 

rearrangement with younger age, never-smoking status, and liver metastases. 37 Indeed, 

nearly half (146 of 335, 44%) of never smokers in this cohort had EGFR mutations. 

However, it is notable that over a third of patients with EGFR-mutated or ALK-rearranged 

tumors had some smoking history. Of current smokers, 6% had EGFR mutations and 6% 

had ALK rearrangements (Supplemental Table 6). Clear correlations between tumor 

histologic pattern and mutation type are lacking, driven in part by variable recognition of 

defined subtypes and by the morphologic complexity of lung adenocarcinoma. After 

restricting the analysis to the cohort of surgically resected specimens and employing central, 

expert pathology review, we found EGFR mutations more strongly correlated with acinar 

than with solid subtype histology, although even in this latter group EGFR was mutated in 

14% of cases. 38,39 These findings thus reinforce the widely adopted recommendations that 

testing for these targetable alterations be performed on all lung adenocarcinoma patients, 

irrespective of patient demographics and tumor histologic subtype. 6,40

This study is one of the largest of its kind to address the many challenges that arise in the 

course of molecular testing of solid tumors for therapeutic decision-making. It is reassuring 

that geographically diverse institutions serving a wide range of patient populations generate 

similar results using a variety of sample types and testing platforms, underscoring the ability 

of advanced molecular diagnostic laboratories to establish, validate and implement high-

fidelity assays. However, our experience clearly highlights the drawbacks of sequential 

targeted genotyping in practice. Menu variation in multiplex genotyping assays means that 

individual institutions may offer incomplete coverage at certain targets, whereas Sanger 

sequencing provides more comprehensive coverage but at much lower analytic sensitivity 

and requires significantly more input DNA. FISH studies drive an increased need for tumor 

tissue, presenting a particular problem in lung adenocarcinoma where the number of gene 

fusions and copy number targets continues to grow. As a result, this iterative approach to 

mutational profiling appears unsustainable in the face of increasing numbers of targetable 

alterations, and new approaches to testing are needed and are indeed in various stages of 

implementation nationally, such as next generation sequencing (NGS).

In summary, The LCMC demonstrates the feasibility of widespread implementation of 

mutational profiling in the clinical care of lung cancer patients. It lays the groundwork for 

future collaborative efforts that will be necessary to fully characterize the mutational 

spectrum of lung cancers in light of the relative rarity of many of the newly recognized 

driver alterations in this tumor type. As clinical oncology and molecular diagnostics 

embrace new technological platforms, this type of collaborative study is critical for 

validation of biomarkers and for facilitating identification of candidates for clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutations identified in the LCMC cohort
A pie chart is shown in which the size of each slice is proportional to the mutation frequency 

in the full genotyping set of 733 patients. Cases with two mutations are represented only 

once based on the mutation that primarily dictated clinical care in each patient. As a result 

the frequencies of ALK, MET, and PIK3CA alterations appear somewhat lower in this figure. 

(See Table 4 for details.) Frequencies presented here also differ slightly for some genes in 

comparison to frequencies for the any-genotyping group (n=1007). Please see details of the 

full-genotyping vs. any-genotyping cohorts, and a comprehensive breakdown of all 

mutations identified in our original paper on the LCMC experience, ref. 14).
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Figure 2. Demographic and prognostic associations with any and individual specific mutations
Statistically significant and other notable associations are shown in the form of bar graphs 

for several mutation types. “Any” refers to any identified mutation. KRAS, EGFR, and 

ERBB2 consist of all point mutations occurring in those genes; ALK refers to translocations 

involving ALK, and MET refers to amplification of the MET locus, identified by FISH. 

More detailed demographic and prognostic association data are provided in Supplemental 

Table 7.
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Table 1

Analytic methods and sensitivity across six major testing sites.

Number of sites Platform Analytic sensitivity Minimum accepted tumor cellularity
†

4 SNapShot 5-10%
10-20%

*

PCR-sizing 5-10% 10-20%

1 Sequenom 5-10% 25%

PCR-sizing 5-10% 25%

1 Sanger 25% 50%

Sanger with PNA
* 5% 10%

These six sites were responsible for more than 90% of mutation testing. A single site (not included here) produced only 1% of the overall results 
and utilized a different methodology (pyrosequencing) and thus is not included in this cross-platform analyses.

*
Peptide nucleic acid (PNA) clamps were used to enhance sensitivity of mutation detection in EGFR, KRAS and BRAF genes.

†
Manual microdissection to isolate tumor-rich areas for DNA extraction was performed at all sites.
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Table 2

Genotyping efficiency and positive call rate per specimen type.

Subsets Biopsy Cytology Surgical p-value

Specimens tested at all LCMC sites

Any small genotyping & known specimen type (n=813) n=289 n=134 n=390

Small-mutation genotyping efficiency (mean call rate across cases) 98% 99% 98% 0.04

Small-mutation positive call rate (proportion of cases detected with any small mutation) 55% (159) 56% (75) 56% (218) 0.97

Any genotyping & known specimen type (n=855) n=306 n=145 n=404

ALK-FISH genotyping efficiency (proportion of cases with successful ALK testing) 91% (279) 92% (133) 95% (383) 0.14

ALK-FISH genotyping & known specimen type (n=795) n=279 n=133 n=383

ALK-FISH positive call rate (proportion of cases detected with ALK rearrangement) 10% (27) 8% (10) 8% (32) 0.73

Specimens tested at single LCMC site with plurality of testing

Any small genotyping & known specimen type (n=360) n=85 n=33 n=242

Small-mutation genotyping efficiency (mean call rate across cases) 96% 100% 99% 0.49

Small-mutation positive call rate (proportion of cases detected with any small mutation) 53% (45) 45% (15) 56% (136) 0.48

Any genotyping & known specimen type (n=398) n=100 n=43 n=255

ALK-FISH genotyping efficiency (proportion of cases with successful ALK testing) 100% (100) 93% (40) 96% (245) 0.06

ALK-FISH genotyping & known specimen type (n=385) n=100 n=40 n=245

ALK-FISH positive call rate (proportion of cases detected with ALK rearrangement) 13% (13) 15% (6) 8% (20) 0.22

Specimens of unspecified type were not included in this analysis.
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Table 3

Specimen sufficiency according to type of specimen, in 470 specimens of known type, tested at a single 

LCMC site with plurality of testing.

Screen failure for insufficient material Biopsy (n=136) Cytology (n=66) Surgical (n=268) p-value

No 74% (100) 65% (43) 95% (255) <0.001

Yes 26% (36) 35% (23) 5% (13)

J Thorac Oncol. Author manuscript; available in PMC 2016 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sholl et al. Page 20

Table 4

Doubleton molecular alterations: Dual FISH or FISH-mutation.

Doublet 
on case 

#

Alteration #1 Alteration #2 Confirmed, same technique Confirmed, orthologous technique Comments

1 ALK MET ND ND Insufficient tissue remaining

2 ALK MET ND ND Insufficient tissue remaining

3 ALK EGFR c.2582T>A ALK- ND EGFR-Yes ND Patient experienced minimal 
response to sequential 
erlotinib and crizotinib 
therapies

4 ALK EGFR c.2573T>G ALK- No EGFR-Yes No ALK IHC negative. Repeat 
ALK FISH showed atypical 
rearrangement, considered 
negative. Patient responded 
to erlotinib21

5 ALK EGFR ex19del Yes ND No follow up data available

6 ALK BRAF c.1799T>A ALK-No BRAF-Yes No ALK IHC negative. Repeat 
ALK FISH negative. Patient 
failed to respond to 
crizotinib 21

7 EGFR ex19del MET Yes ND MET dual ISH was a 
technical failure

8 EGFR c.2573T>G MET Yes ND Insufficient tissue available 
for orthogonal testing

9 HER2 ex20ins MET Yes Yes MET dual ISH positive

10 KRAS c.35G>C MET Yes Yes MET dual ISH positive

11 KRAS c.35G>T MET Yes ND No tissue available for 
orthogonal testing

12 KRAS c.34G>T MET Yes Yes MET dual ISH positive

13 KRAS c.34G>T MET Yes Yes MET dual ISH positive

ND, not done.
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