Design Elements of Clinical Trials Involving Biomarkers

Canadian Cancer Trials Group
New Investigator Clinical Trials Course

Bingshu E. Chen, Ph.D.
Queen’s University
Learning Objectives

At the end of the lecture the participants will be able to:

1. Distinguish the difference between prognostic and predictive biomarker
2. Understand three types of biomarker related clinical trial designs: biomarker enrichment design, biomarker stratify design, biomarker adaptive design.
3. Get basic idea on how to identify cut-point for a continuous biomarker.
Outline

• Prognostic and predictive biomarkers

• Design of Clinical Trials that involves biomarker
 - Biomarker enriched designs
 - Biomarker stratified designs
 - Biomarker adaptive designs

• Cut point issues for continuous biomarkers
Prognostic and predictive biomarker

• Classification of Biomarkers in Clinical Trials

- **Prognostic biomarker**: A measurement that is associated with clinical outcome in the absence of therapy or with standard therapy.

- **Predictive biomarker**: Biological characteristics of patients measured at baseline, that helps identify patients who are likely or not likely to benefit from a therapy.
Prognostic and predictive biomarker

<table>
<thead>
<tr>
<th>Is the biomarker prophostic</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Neither prognostic nor predictive</td>
<td>Predictive but not prognostic</td>
</tr>
<tr>
<td>Yes</td>
<td>Prognostic but not predictive</td>
<td>Both prognostic and predictive</td>
</tr>
</tbody>
</table>
Prognostic and predictive biomarker

• In statistical term: **Interaction** effect between treatment Z and a biomarker W for response variable Y

\[(Y|Z, W) \sim \beta_0 + \beta_1 Z + \beta_2 W + \beta_3 ZW\]

- Neither prognostic nor predictive: \(\beta_2 = 0, \beta_3 = 0\)
- Prognostic but not predictive: \(\beta_2 \neq 0, \beta_3 = 0\)
- Predictive but not prognostic: \(\beta_2 = 0, \beta_3 \neq 0\)
- Both predictive and prognostic: \(\beta_2 \neq 0, \beta_3 \neq 0\)
Prognostic and predictive biomarker

• Examples of biomarker
 ➢ Prognostic
 ➢ But no predictive
 ➢ No treatment effect
 ➢ T: Treatment arm
 ➢ C: Control arm

![Graph showing the difference between biomarker positive and negative outcomes in treatment and control arms.](image)
Prognostic and predictive biomarker

- Examples of biomarker
 - **Prognostic**
 - **But no predictive**
 - Treatment benefit equally
 - T: Treatment arm
 - C: Control arm
Prognostic and predictive biomarker

BR.21: Histology is Prognostic but not Predictive

HR (adenocarcinoma) = 0.71 (95% CI, 0.56 – 0.92)
HR (squamous cell) = 0.67 (95% CI, 0.50 – 0.90)

Interaction p-value = 0.97

Clark GM. Mol Oncol 2008; 1:406-12
Prognostic and predictive biomarker

• Examples of biomarker

 ➢ Predictive
 ➢ But no prognostic
 ➢ Treatment benefit only the biomarker positive group but not the biomarker negative group
Prognostic and predictive biomarker

Biomarker Positive, T
Biomarker Positive, C
Biomarker Negative, T
Biomarker Negative, C
Prognostic and predictive biomarker

BR.21: Smoking is Predictive but not Prognostic

HR (never smokers) = 0.42 (95% CI, 0.28 – 0.64)
HR (ever smokers) = 0.87 (95% CI, 0.71 – 1.05)

Interaction p-value = 0.006

Clark GM. Mol Oncol 2008; 1:406-12
Design biomarker clinical trials

• Different type of design with biomarkers

 ➢ Biomarker enriched designs

 ➢ Biomarker stratified designs

 ➢ Biomarker adaptive design
Design biomarker clinical trials

• Biomarker enriched designs (Targeted designs)
Design biomarker clinical trials

• To use biomarker enrichment designs, we need

 ➢ Validated diagnostic test to identify Marker positive and Marker negative patients

 ➢ Strong biological evidence that Marker negative patients will not benefit from the Target Therapy

 ➢ Only Marker positive patients will be randomized to Target Therapy and Standard Therapy groups
Design biomarker clinical trials

• Examples of biomarker enriched designs

➢ Trastuzumab (Herceptin) for HER2 positive breast cancer patients (Shak S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin Oncol 1999;26:71-7.)

• Overall survival from Vemurafenib trial for melanoma patients with BRAF mutation

Design biomarker clinical trials

• Biomarker stratified designs

Marker+

Randomization

Targeted Therapy

Standard Therapy

Marker−

Randomization

Targeted Therapy

Standard Therapy
Design biomarker clinical trials

• To use biomarker *stratified* designs, we need

 ➢ Validated diagnostic test to identify Marker positive and Marker negative patients

 ➢ Marker negative patients may have benefit from the Target Therapy

 ➢ Both Marker positive and negative patients will be randomized to Target Therapy and Standard Therapy groups
Design biomarker clinical trials

• Challenges for analyzing data from biomarker stratified designs
 - The statistical analysis plan have to be pre-specified
 - Multiple study populations could inflate type I error rates (have to control overall alpha < 0.05)
 - Scenario A: If treatment is more like to be effective in biomarker positive group
 - Scenario B: If there is limited confident in the predictive biomarker
Design biomarker clinical trials

• Test I: Sequential approach
 ➢ Step 1: Test treatment effect in the biomarker positive group with alpha = 0.05
 ➢ If significant, then stop!
 ➢ If negative, go to step 2
 ➢ Step 2: Test treatment effect in the biomarker negative group with alpha = 0.05

• Test II: Fall-back approach
 ➢ Step 1: Test treatment effect in the overall population with alpha = 0.03 (a reduced significant level)
 ➢ If significant, then stop!
 ➢ If negative, go to step 2
 ➢ Step 2: Test treatment effect in the biomarker positive population with the remaining (unused) significant level alpha = 0.02

Design biomarker clinical trials

• Example of biomarker stratified design

Marker Validation for Erlotinib in Lung Cancer
Design biomarker clinical trials

• Using archived tumour specimens to conduct prospective-retrospective analysis of a randomized phase III trial to identify predictive biomarker

 ➢ This requires archived specimens be available on most patients

 ➢ The Statistical analysis plan have to be developed beforehand

 ➢ Example:

 ➢ CO.17 with K-RAS mutation
Design biomarker clinical trials

• Biomarker adaptive design

Unselected patients

Randomization

Target Therapy

Standard Therapy

Design biomarker clinical trials

• To use biomarker adaptive designs, we need

 ➢ Tumour specimen to be collected from all patients at study entry
 ➢ Value of the biomarker is NOT used as an eligibility criteria
 ➢ Allow phase III trial without pre-specify the cut-point for biomarker
 ➢ Statistical inferences for treatment effects:

Design biomarker clinical trials

• Example of biomarker adaptive design for prostate cancer with serum prostatic acid phosphatase (AP) biomarker.
Design biomarker clinical trials

- An example of ki67 biomarker for breast cancer patients (Demo data)

Interaction p-value: 0.03

http://statapps.tk/biomarker_interaction/
Many biomarkers are continuous variables.

It is critical to establish a validate cut-point for biomarker

Example of using median Ki-67 as cut-point gives total different results

http://statapps.tk/biomarker_interaction/
Continuous biomarker

- Treat biomarker as a continuous variables

Liu, Jiang and Chen (2015): *Statistics in Medicine*
Continuous biomarker

• Actionable predictive biomarker? Clinically useful vs Statistically significance
 ➢ Idea situation: exists an obvious threshold (or a cut point)
 ➢ Clinically useful situation: exists a potential threshold
 ➢ Clinically not useful situation: a moderate but statistically significant linear relationship
Idea

$$\beta_0 + \{\beta_1 + \beta_3 I(W \geq c)\}Z$$

Treatment effect

Biomarker score

β_1 + β_3
Clinically useful

\[\beta_0 + \beta(W) Z \]
Clinically not useful

$$\beta_0 + (\beta_1 + \beta_3 W)Z$$
General: multiple cut points

$$\beta_0 + \{\beta_1 + \beta_3 I(c_1 \leq W \leq c_2)\}Z$$
➢ Statistical methods to estimate optimal cut-points

➢ R package is now available for biomarker threshold models (the bhm package).

➢ Source code from the Comprehensive R Archive Network (https://CRAN.Rproject.org/package=bhm). To install the package:

```r
> install.packages("bhm")
```

Fitting Biomarker Threshold Models

Description

{bhm} is an R package for Biomarker Threshold Models. It uses either Hierarchical Bayes method or profile likelihood method (Chen, et al, 2014 and Tian, et al, 2016) to identify a cut-point (threshold parameter) for the biomarker in either generalized linear models or Cox proportional hazards model. The model is specified by giving a symbolic description of the linear predictor and a description of the distribution family.

Usage

bhm(x, ...)

S3 method for class 'formula'
bhm(formula, family, data, control = list(...), ...)

use
bhm(y ~ biomarker)
#
to fit a prognostic model with biomarker term only
use
#
bhm(y ~ biomarker+treatment)
Summary

• Predictive and prognostic biomarkers

• Clinical trials design account for biomarkers

• How to deal with continuous biomarkers