Economic Analyses in Clinical Trials

Natasha Leighl (and Nicole Mittmann) Committee on Economic Analysis, NCIC CTG

Natasha.Leighl@uhn.on.ca; Nicole.Mittmann@sunnybrook.ca

Financial Disclosures

Research Funding – Novartis

Learning Objectives

Review concepts including:

- Cost effectiveness
- Cost utility
- Cost minimization
- Incremental cost effectiveness ratio (ICER)
- Review criteria for inclusion of economic analysis alongside clinical trial
- To understand the impact of molecular testing on design of economic analyses

Economics and Cancer

- Cancer is growing problem estimated cost of cancer care in US >\$210 billion USD Meropol & Schulman, J Clin Oncol 2007;25(2):180-186
- New treatments that improve outcome should be adopted
- But with limited resources, economic constraints factor into resource allocation, in order to maximize population health
- 3 pillars of FDA approval of novel interventions:
 - Safety; Mechanism of action; Clinical efficacy
- □ 4th pillar (pCODR): cost-effectiveness!
- Cost effectiveness expression of an intervention's cost in relation to its benefit

Cost of Health Care and Life Expectancy

Female Life Expectancy (years)

Meropol & Schulman J Clin Oncol 2007;25(2):180-186

Top-10 Therapeutic Classes by Drug Cost, 2007/08

Cardiovascular Drugs Central Nervous System Drugs Gastrointestinal Drugs Autonomic Agents Hormones & Substitutes Anti-Infective Agents Antineoplastic Agents Blood Formation and Coagulation Eye, Ear, Nose & Throat Prep. Skin & Mucous Membrane Prep.

* Does not include New Drug Funding Program (NDFP) expenditures, administered on behalf of the MOHLTC by Cancer Care Ontario (CCO). For 2007/2008 NDFP expenditures =\$162.5million

BCCA: Projected Growth in Provincial Drug Costs (\$ Millions)

"First one on when the music stops gets today's hip operation."

Types of Economic Evaluation

- Cost-effectiveness analysis (CEA) outcome measured units, e.g. life-years gained or clinical event avoided; sometimes used to refer to all economic evaluations
- Cost-utility analysis (CUA) outcome measured in terms of healthrelated preference or value, e.g. quality-adjusted life-years (QALYs)
- Cost-benefit analysis (CBA) values net benefits and opportunity costs in monetary terms
- Cost-minimization analysis (CMA) Outcomes of intervention & alternatives are considered equivalent; alternative with lowest cost is selected
- Cost-consequence analysis (CCA) costs and outcomes are listed separately in a disaggregated format, (no ICER)

Incremental Cost Effectiveness Ratio (ICER)

Option A

Option B

 \Box Δ cost between option A and option B/ Δ benefit

Treatment A costs \$10,000 - B \$8,000/A improves survival by 1 year, quality-adjusted survival by 0.8 yrs

□ ICER – \$2,000/LYG; \$2,500/QALY

Components of EA

- Select type of analysis (CUA, CEA, CMA)
- Perspective Societal; Payer (government), Patient
- Prospective or Retrospective Data Collection
- Costs direct and indirect medical, lost productivity
- Time Horizon lifetime; duration of clinical trial
 - What about after trial? Adjuvant late effects, relapse and treatment
- Outcomes OS in Phase III trial; (what about PFS in phase II?)
 - How do you value OS with cancer vs. cancer-free? Utilities, QALY
 - What about value of PFS, RR? Time with toxicity?
 - What comparator(s) should be used?
- Discounting used for valuation of future costs, benefits
- Uncertainty 95% confidence intervals, sensitivity analyses

Quality Adjusted Life Year (QALY)

- Integrates mortality and morbidity
- QALY = duration of health state * utility score during that health state
- 1 year with disease = fraction of a healthy year
- Considers impact on quality of life
- Considers impact of toxicity

Health Preference (Utility)

Measure of health preference

- 1-perfect health
- 0-death
- Average Canadian 0.92-0.96
- Changes according to disease state
- Standardized tools available to measure
 - Direct-Time Trade Off, Standard Gamble
 - Indirect-HUI, EQ5D, VAS

Adopting a New Technology

Laupacis et al. CMAJ 1992;146(4):473-81

Thresholds for Adopting Technology

Laupacis et al. CMAJ 1992;146(4):473-81

Thresholds for Adopting Technology

Laupacis *et al.* CMAJ 1992;146(4):473-81 Earle *et al.* J Clin Oncol 2000;18:3302-17 Nadler et al. Oncologist 2006; 11(2):90-5 Berry et al. J Clin Oncol 2010; 28:4149-53 Ubel et al. Health Aff 2012; 31:709-717

INTERVENTION	COST/life-yr gained
Bone marrow transplant	\$220,000
Inpatient hemodialysis	\$ 54,000
Neonatal ICU	\$ 30,900
Automoblie airbags	\$ 20,000
Treatment of mild hypertension	\$ 19,100
Treatment of severe hypertension	\$ 9,400
Bypass surgery (left main)	\$ 4,200
Mandatory smoke detectors	\$ 1,300
Smoking cessation counselling in men	\$ 705

CEA Criteria for Determining if a Clinical Trial is Appropriate for an Economic Evaluation

- New intervention anticipated to have only a modest therapeutic benefit in a potentially large patient population
- Therapy potentially very costly
- □ High degree of uncertainty about economic impact of treatment
- Economic evaluation may yield important information in determining routine practice (e.g. equivalence trial)
- Economic data will assist future economic evaluations
- □ For intergroup trials, suitable number of Canadian patients (100)

Evans et al Chronic Dis Prev 2003

NCIC CTG CO.17: Cetuximab improves survival and quality of life in end-stage advanced colorectal cancer; greatest benefit in KRAS wild type (not KRAS mutant)

- 69% tumour samples (394/572), similar characteristics to overall population
- 58% KRAS wild type of those tested (230/394), 40% of entire study population

Jonker DJ et al. N Engl J Med 2007; 347:2040-8; Karapetis CS et al. N Engl J Med 2008; 359(17):1757-65

Prospective Economic Evaluation (resource utilization, HUI3) of Cetuximab Therapy in the entire study population and KRAS wild type subgroup

Mittmann N et al. J. Natl. Cancer Inst. 2009; 101:1182-1192

How not to get your drug funded in Canada

"Tests on rats show that if you pay for these drugs through the nose, the effect increases dramatically."

BR.21: Erlotinib v. Placebo in pretreated advanced NSCLC Overall Survival

Shepherd et al, Erlotinib in Previously Treated Non-small –Cell Lung Cancer, NEJM, 353;2; 123-132

Mean Costs per Treatment Arm

ICER \$94,638 CAD/LYG (95% CI: \$52,359 - \$429,148/LYG)

Forest Plot: Survival in BR.21 by Selected Clinical and Molecular Subgroups

	Ν	HR			
Erlotinib	731	0.70			ICER \$94,638/LYG
Never smoker	146	0.42			\$ 39,487 (\$29,963-\$68,018)
Current/Exsmoker	545	0.87			\$ 504,911 (-\$3,149,228-\$3,122,895)
1 prior regimen	364	0.76			\$ 67,844 (\$39,220 - \$330,026)
2 prior regimens	367	0.75			\$ 110,411 (-\$816,326-\$1,245,117)
EGFR mutation	34	0.55		_	\$ 138,168 (-\$1,125,890-\$1,377,049)
EGFR wild type	170	0.74			\$ 87,994 (-\$833,900-\$706,634)
EGFR high copy	61	0.43			\$ 33,353 (-\$91,232-\$384,569)
EGFR low copy	98	0.80		_	\$ 109,792 (-\$834,935-\$831,854)
KRAS mutation	30	1.67			BSC dominant
KRAS wild type	176	0.69]		\$ 76,657 (-\$470,406 - \$645,461)

Forest Plot: Survival in BR.21 by Selected Clinical and Molecular Subgroups

	Ν	HR		
Erlotinib	731	0.70		ICER \$94,638/LYG
Never smoker	146	0.42		\$ 39,487 (\$29,963-\$68,018)
Current/Exsmoker	545	0.87	- 	\$ 504,911 (-\$3,149,228-\$3,122,895)
1 prior regimen	364	0.76		\$ 67,844 (\$39,220 - \$330,026)
2 prior regimens	367	0.75		\$ 110,411 (-\$816,326-\$1,245,117)
EGFR mutation	34	0.55		\$ 138,168 (-\$1,125,890-\$1,377,049)
EGFR wild type	170	0.74		\$ 87,994 (-\$833,900-\$706,634)
EGFR high copy	61	0.43		\$.33,353 (-\$91,232-\$384,569)
EGFR low copy	98	0.80		\$ 109,792 (-\$834,935-\$831,854)
KRAS mutation	30	1.67		BSC dominant
KRAS wild type	176	0.69		\$ 76,657 (-\$470,406 - \$645,461)
EGFR high copy EGFR low copy KRAS mutation	98 30	0.80		\$ 33,353 (-\$91,232-\$384,569) \$ 109,792 (-\$834,935-\$831,854) BSC dominant

CEA Initiative to Consider Cancer as a "Special Case" in Health Technology Assessment

Canadian Agency for Drugs and Technologies in Health Agence canadienne des médicaments et des technologies de la santé

HTA

Addendum to CADTH's Guidelines for the Economic Evaluation of Health Technologies: Specific Guidance for Oncology Products

DECEMBER 2009

NCIC CTG NCIC GEC

Cite as: Mittmann N., Evans W.K., Rocchi A., Longo C. J., Au H.-J., Husereau D., Leighl N., Isogai P., Krahn M., Peacock S., Marshall D., Coyle D., Malfair Taylor S.C., Jacobs P., Oh P.I. *Addendum to CADTH's Guidelines for the Economic Evaluation of Health Technologies: Specific Guidance for Oncology Products.* Ottawa: Canadian Agency for Drugs and Technologies in Health; 2009.

- Specific challenges are often encountered in oncology economic evaluations
 - choice of outcome to be used (e.g., overall survival [OS] versus other measures of disease control, such as progression-free survival);
 - the best method to estimate survival gain (e.g., mean survival, median survival, area under the curve);
 - time horizon, especially because most clinical trials report early results;
 - which toxicities to include in the resource utilization data (e.g., mild versus severe);
 - which perspective to take (e.g., the perspective of the payer in a publicly funded federal/provincial/territorial health care system versus a societal perspective).

Why Interventions Fail Economics 101...

- Cost: ICER, budget impact too high (>70-100K/QALY)
- Benefits not enough clinical benefit (survival); sometimes not enough advocacy...
- Methodologic/Process Issues
 - Pharmacoeconomic submission poor quality
 - Clinical data hard (for non-oncologists) to interpret
 - outcome not OS but surrogate (PFS, RR) how to value?
 - Trial design Phase II not III, crossover allowed, outdated/wrong comparator
 - Unpublished data or abstract/ASCO presentation only

Economic Analyses in Clinical Trials

- Important addition to strengthen, complement results of ongoing clinical trials
- Helps clinicians, patients and policy-makers interpret value of novel interventions
- Critical part of Canadian oncology drug funding process (pan Canadian Oncology Drug Review)
- Timely economic evaluation of CTG interventions may facilitate uptake of novel therapies

