NCIC CLINICAL TRIALS GROUP 2011 NEW INVESTIGATOR CLINICAL TRIAL COURSE

Correlative Studies in Phase III Trials: Laboratory Aspects of Biomarker Studies

Ming S. Tsao, MD, FRCPC
Choksi Chair in Lung Cancer Translational Research
Princess Margaret Hospital
University of Toronto

Conflict of Interest Declaration

Research grants from:

- Med Biogene (Vancouver, Canada)
- Ventana Medical Systems (Tucson, Arizona)
- Hoffmann-La Roche
- Pfizer Canada

Honoraria from:

AstraZeneca, Hoffmann-La Roche, Pfizer
 Canada, Lilly Canada, Boehringer-Ingelheim,
 Daiichi-Sankyo, Precision Therapeutics

Biomarker:

- A parameter that can be used to measure the progress of disease or the effects of treatment
- Can be specific cells, molecules, or genes, gene products, enzymes, or hormones.
- *In molecular terms* biomarker is "the subset of markers that might be discovered using genomics, proteomics technologies or imaging technologies.

Biomarker Studies in Phase 3 Trials

Prognostic markers:

- Identify patients who are at high risk of early death
- High risk patients could potentially benefit from early aggressive treatment

Predictive markers:

- Identify patients most likely to benefit (or not benefit) from specific therapy
- May tailor patients for more effective treatment and avoid potential harms

Relative Importance of Prognostic and Predictive Markers

	Early Stage	Advanced Stage
Prognostic Markers	+++	+
Predictive Markers	++	+++

Role of Pathologist/Biomarker Scientist

Concept:

- Understanding potential biomarkers (drug targets)
- Molecular aberrations linked to drug targets

Assay:

- Assays available to evaluate specific aberrations
- Assay pros and cons
- Reliability and cut-offs
- Availability and adoptability

Sample:

- Sample types, availability and quality
- Impact of tissue heterogeneity on assay

Essential Issues to Consider

- Knowledge of drug targets (and related signaling pathways) improves:
 - Choices of markers to be studied
 - Development of diagnostic algorithm for clinical use of the biomarkers
- Biomarker frequency (prevalence) impacts on statistical power calculation
- Nature of an aberration determines the appropriate assays to use

Drugs and Potential Targets

Genomic Aberrations as Potential Drug Targets in Lung Adenocarcinoma

Sun Y, et al. J Clin Oncol 2010;28:4616-20 Pao W, Girard N. Lancet Oncol 2011;12:175-80

Marker Prevalence Impacts on Sample Size Requirement

A hypothetical prognostic marker analysis:

- Hazard ratio: 2.0
- Survival at 5 yrs: 60%
- Accrual: 4 yrs
- Extra follow-up: 2 yrs
- Alpha: 0.05
- Power: 80% and 90%

Courtesy of Melania Pintilie (biostatistician)

Few Classes of Drugs Have Found the Real Targets in Lung Cancer

VEGF targeted agents
EGFR targeted agents
ALK inhibitor

mTOR inhibitors

Proteasome inhibitors

Cell cycle targeted agents

- PARP inhibitors
- CDK inhibitors
- Novel chemotherapy
- Proapoptotic agents

Other Kinase Inhibitors:

- PI3K
- AKT
- MAP kinase
- MEK (Ras, Raf)
- SRC
- Aurora kinase
- Polo-like kinases
- PKC

HSP 70, 90 targeted agents

HIF1-alpha antagonists

C-met inhibitors

Vaccine Therapy

Types of Biomarkers

Protein

miRNA

Molecular Biomarker Assays

- Protein:
 - Immunohistochemistry (tissue)
 - Elisa (blood/fluid)
- DNA/RNA/microRNA:
 - Polymerase chain reaction (PCR) based
 - Mutations
 - Translocations
 - Single nucleotide polymorphisms
 - Transcripts (mRNA & microRNA)
 - Fluorescent in situ hybridization (FISH)
 - Microarrays
 - Other high throughput platforms

REVIEW

Journal of Clinical Pathology 2006;59:790

Immunohistochemical markers of prognosis in non-small cell lung cancer: a review and proposal for a multiphase approach to marker evaluation

C-Q Zhu, W Shih, C-H Ling,* M-S Tsao

- Pubmed search: May 1987 to October 2005
- 462 reports and 12 reviews: ~50 markers studied by ≥ 2 groups

No Markers have been Validated Sufficiently for Clinical Application

Major Issues With IHC

- Lack of uniform standards for:
 - Tissue processing (fixation time)
 - Antibodies
 - multiple sources
 - Variable sensitivity and/or specificity
 - Staining protocol
 - Scoring method
 - Statistical correlation with outcome
- Institutional biases
- Publication biases

Example: Cyclin D1 Studies

Marker	Author	Year	No. of	Antibody Source	MC (clone)/PC	Ab dilution	Univariate	multivariate	Criteria/cut-offs
Cyclin D1	Kwa HB	1996	96	Non-commercial	PC	1:80	no	no	>10% nuclei stained
Cyclin D1	Caputi M	1999	135	Non-commercial	PC	1:100	poor	NA	0; 1-30%; 30-60%; >60%
Cyclin D1	Keum JS	1999	69	Novocastra	MC(P2D11F11)	1:200	poor	no	>5% cells stained
Cyclin D1	Brambilla E	1999	168	Dako	NA	NA	no	no	>5% cells
Cyclin D1	Anton RC	2000	467	PharMingen	MC(G124-326)	1:500	Good for SQ	N/A	>10% cells
Cyclin D1	Volm M	2000	145	Santa Cruz	MC(Ab-3)	1:10	no	no	moderate-strong staining
Cyclin D1	Nguyen VN	2000	89	Dako	MC(DCS-6)	NA	no	NA	cytoplasmic staining
Cyclin D1	Gugger M	2001	92	Novocastra	MC(P2D11F11)	1.6 ug/ml	Good	yes	any nuclear staining (?)
Cyclin D1	Jin M	2001	106	PharMingen	MC(G124-326)	1:50	poor	yes	> nuclear background or cytoplasm staining
Cyclin D1	Dosaka-Akita H	2001	217	Oncogene Science	MC(DCS-6)	1:40	no	N/A	any nuclear staining
Cyclin D1	Ikehara M	2003	72	Novocastra	PC	1:200	poor	NA	>20% cells
Cyclin D1	Au NHC	2004	284	Dako	MC(DCS-6)	1:300	Good for AD	no	4 tiers system; cut-off for positive not stated
Cyclin D1	Burke L	2005	106	Oncogene Science	MC(DCS-6)	1:40	no	no	Intensity (0-3) + % cells (0-3); positive: 4 or >
Cyclin D1	Esposito V	2005	105	NA	NA	NA	Poor	yes	>5% cells
Cyclin D1	Dworakoska D	2005	111	Dako	MC(DCS-6)	1:100	no	no	any cell stain

Ideal Scoring System

- Simple & reproducible independently
- Minimize dependency on technical variability
- Minimize observers' subjectivity
- Capture heterogeneity

With Most IHC Markers, Staining Pattern is Heterogeneous

Scoring Systems for IHC

Direct Score

Staining intensity:

- Absent: 0
- Weak: 1
- Moderate: 2
- Strong: 3

Percent tumor cells stained:

- 0 to 100%

H-Score

- Attempt to represent overall staining features:
 - Intensity (I) x percent (%)

- Capture heterogeneity:
 - $-0 \times \% (I_0) + 1 \times \% (I_1) + 2 \times \% (I_2) + 3 \times \% (I_3)$

Quantitative Image Analysis

Mutation Analysis by PCR-Sequencing

Assay sensitivity is limited by amount of contaminating normal DNA of non-cancer cells

Macro-dissection to Enrich for Tumor Cells

Sensitivity of Mutation Assays

Method	Sensitivity	Mutations identified
Direct Sequencing	25%	Known and new
PCR-SSCP	10%	Known and new
TaqMan PCR	10%	Known only
Loop-hybrid mobility shift assay	7.5%	Known only
Cycleave PCR	5%	Known only
PCR-RLFP (fragment length analysis)	5%	Known only
MassARRAY genotyping	5%	Known only
LNA -PCR clamp	1%	Known only
Scorpion ARMS (DxS)	1%	Known only
dHPLC	1%	Known only
COLD-TaqMan PCR	0.05%	Known only

BR.21 erlotinib study:

Higher Sensitivity Method Identified 40% More Mutations

Number of Patients	Direct Sequencing	Sequencing + ARMS/RLFP
In the trial	7	31
Successful EGFR mutation analysis	201	204
Ex-19 del + L858R	24 (12%)	34 (17%)

Tsao et al, NEJM 2005; 353: 133-44 Zhu CQ, et al. J Clin Oncol 2008;26:4268-75

Impact on Clinical Outcome

EGFR Wild Type

Exon 19 or 21 Mutations

NEJM 2005

JCO 2008

Disomy

≤2 gene copies in >90% cells

Low Trisomy

3 gene copies in >10% <40% cells

High Trisomy

3 gene copies in ≥40% cells

Limited adoptability (need central labs)

Low Polysomy

≥4 gene copies in >10% but <40% cells

High Polysomy

≥4 gene copies in ≥40% cells

Gene Amplification

Gene/chromosome ratio >2 or ≥15 gene copies in ≥10% cells

Common Tissue Fixatives and DNA/RNA Quality

Base Fixative	DNA	RNA
Buffered formaldehyde	Fair	Fair
Glutaraldehyde	Good	Unknown
Methanol-chloroform	Good	Good
Ethanol-chloroform	Good	Good
Picric acid (Bouin)	Poor	Poor
Mercuric CI (B5, Zenker)	Poor	Poor
Decalcifying acids	Poor	Poor

Biological Samples

- Resection
- Open biopsy
- Needle core biopsy
- Needle aspiration biopsy
- Effusion
- Sputum

Blood: Protein +++; DNA/RNA +

Ideal specimens (resection/biopsy)

Challenging Specimens: Needle Core Biopsies

Cytology Cell Blocks: Can Be Excellent Materials for Molecular Analyses

Need the pathologist to evaluate section

EGFR Mutation Analyses on Aspiration/Fluid Materials

	Sample	Fixative	NSCLC	Analysis Method	Ex 19 del	Ex 21 L858R	Others	Yield
Nomoto	FNA	Ethanol	37 (35A)	HRMA	13	9	2	59%
Smith	FNA	Air-dried	11 (6A)	HRMA	3	0	0	27%
Lim	FNA/Bx	RNAlater	88 (42A)	Dseq/WGA	7	10	4	24%
Wu	Effusion	-80C	136 (93A)	DSeq	32	50	11	68%
Kimura	Effusion	-80C	43 (30A)	DSeq	9	2	0	26%
Kimura	Effusion	-80C	24 (23A)	DxS	6	2	0	33%
Horiike	TBNA	-80C	94 (58A)	DxS/DSeq	17	14	0	33%
Fassina	FNA	FineFix	77 (61A)	HRMA	0	2	1	4%

FNA: fine needle aspiration

HRMA: high resolution melting analysis

DxS: Scorpion ARMS

TBNA: transbronchial needle aspiration Dseq: direct sequencing

Laboratory Requirement

Stage of Study Lab Requirement Assay requirement Basic research Research Research Lab. (target identification) laboratory assays Preclinical and Research Reliable assays exploratory studies laboratory Clinical **Accredited clinical** Validated assays development laboratory

Sample Availability in Pivotal Phase 3 Lung Cancer Trials

Trial	Sample Collection	Mandatory (yes/no)	Patients in Trial	Patients with samples collected
TRIBUTE	Retro	No	1079	274 (25%)
ISEL	Retro	No	1692	379 (22%)
INTEREST	Retro	No	1433	380 (27%)
Br.21	Pro	No	731	325 (45%)
IPASS	Pro	No	1217	437 (36%)
IALT	Retro	No	1867	761 (41%)
JBR10	Pro	Yes (KRAS)	482	450 (90%)
SATURN	Pro	Yes (ihc)	889	742 (83%)

ISEL – Unselected Patients

Overall Survival

ISEL: Gefitinib vs. Placebo (1692 patients)

Markers	Patient with Result
EGFR IHC	379 (22%)
EGFR FISH (gene copy)	370 (22%)
EGFR mutation	215 (13%)
KRAS mutation	152 (9%)
BRAF mutation	118 (7%)

ISEL: Response Rate to Gefitinib

Mutation rate	Response Rate			
	Mutant	Wild type		
EGFR (11%)	37.5% (6/16)	2.6% (3/116)		
KRAS (8%)	0% (0/6)	8% (7/87)		
BRAF (0%)	NA	NA		

No Survival Analysis due to inadequate sample size

IPASS

Study design

Patients

- Chemonaïve
- · Age ≥18 years
- Adenocarcinoma histology
- Never or light exsmokers*
- Life expectancy ≥12 weeks
- ·PS 0-2
- Measurable stage IIIB / IV disease

Gefitinib (250 mg / day)

1:1 randomisation

Carboplatin (AUC 5 or 6) / paclitaxel (200 mg / m²) 3 weekly#

Endpoints

Primary

 Progression-free survival (non-inferiority)

Secondary

- · Objective response rate
- Overall survival
- Quality of life
- Disease-related symptoms
- Safety and tolerability

Exploratory

- Biomarkers
 - EGFR mutation
 - · EGFR-gene-copy number
 - EGFR protein expression

*Never smokers, <100 cigarettes in lifetime; light ex-smokers, stopped ≥15 years ago and smoked ≤10 pack years; #limited to a maximum of 6 cycles

Carboplatin / paclitaxel was offered to gefitinib patients upon progression PS, performance status; EGFR, epidermal growth factor receptor

Attrition rates in biomarker analysis

1217 randomised patients (100%)

Sample not available, insufficient quantity to send, cytology only, sample at another site

1038 biomarker consent (85%)

683 provided samples (56%)

- 118 cytology samples
- 565 histology samples

Evaluable for:

EGFR mutation: 437

(36%)

EGFR gene copy

number: 406 (33%)

EGFR expression: 365

(30%)

EGFR Mutation rate: 60% (161/437)

Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma

Tony S. Mok, M.D., Yi-Long Wu, M.D., F.A.C.S., Sumitra Thongprasert, M.D., Chih-Hsin Yang, M.D., Ph.D., Da-Tong Chu, M.D., Nagahiro Saijo, M.D., Ph.D., Patrapim Sunpaweravong, M.D., Baohui Han, M.D., Benjamin Margono, M.D., Ph.D., F.C.C.P., Yukito Ichinose, M.D., Yutaka Nishiwaki, M.D., Ph.D., Yuichiro Ohe, M.D., Ph.D., Jin-Ji Yang, M.D., Busyamas Chewaskulyong, M.D., Haiyi Jiang, M.D., Emma L. Duffield, M.Sc., Claire L. Watkins, M.Sc., Alison A. Armour, F.R.C.R., and Masahiro Fukuoka, M.D., Ph.D.

Conclusions

- Clinical trials of targeted drugs are "risky" without inclusion of biomarker correlative studies
- Role of pathologists/biomarker scientists in Clinical Trial Protocol Design:
 - Proper selection of best candidate markers
 - Protocol for appropriate sample acquisition
 - Proper selection of "best" assays
 - Assist Statistician in the interpretation of data in the right biological context