Prerequisites for Therapeutic Studies What do you need to know before going into the clinic?

Kim N. Chi BC Cancer Agency – Vancouver Centre

Clinical Scenario

- A scientist from a lab in your University approaches you about a drug he has discovered by high throughput screening of agents that targets the product of a new oncogene CUREALL-1
- Works amazingly in vitro and in vivo in a cancer cell line
- No effects on benign fibroblasts
- No bad effects on the mice during the *in vivo* experiments
- They have 1 kg of the stuff ready to go
- Wants you to take drug into humans now

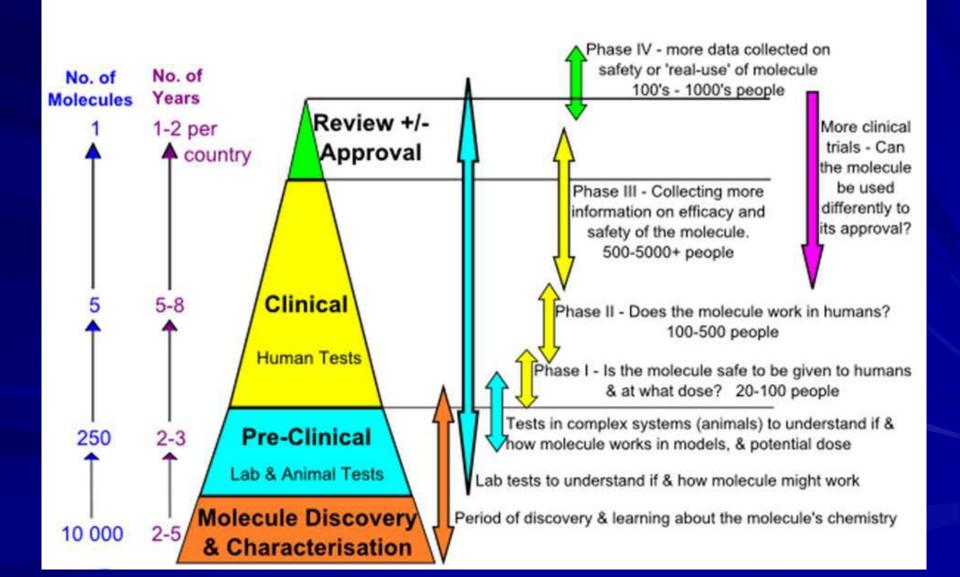
What do you do?

Say "Yes, of course!" because you should always say "yes" as a new investigator
 Say "No" because you've already said "yes" to too many things
 Say "Maybe..."

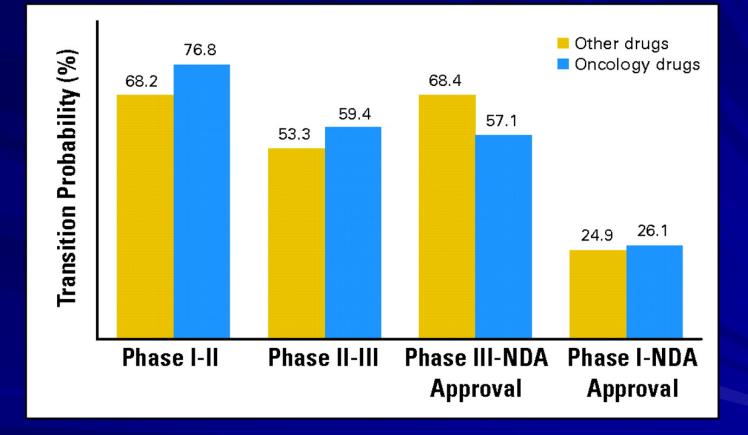
Prerequisites for Therapeutic Studies

Drug development process
 What do you need to know before going into the clinic?

- The target
- The drug
- Efficacy studies
- Safety studies
- Biomarker assays

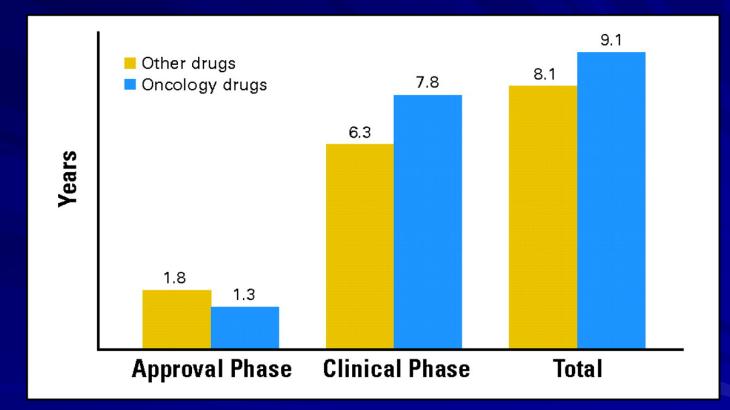

The Drug Development Process

 502 new drugs approved between 1990-2005
 68 new oncology compounds


		Compounds Approved in the United Stat	NDA Submission	NDA Approval Date	
Generic Name	Trade Name	Sponsor	Date		
Abarelix	Plenaxis	Praecis Chiron	12/12/2000	11/25/2003 5/5/1992	
Aldesleukin Alemtuzumab	Proleukin Campath	Berlex	12/1/1988 12/23/1999	5/5/1992	
Alfuzosin	Uroxatral	Sanofi-Synthelabo		6/12/2003	
Alitratinoin	Panretin		12/8/2000 5/27/1998	2/2/1999	
Altretamine	Hexalon	Ligand U.S. Bioscience			
Amifostine	Ethyol	U.S. Bioscience	12/19/1988 9/30/1991	12/26/1990 12/8/1995	
Aminolevulinic acid	Levulan Kerastick	Dusa	7/1/1998	12/3/1999	
Anastrozole		Zeneca	3/29/1995	12/27/1995	
	Arimidex				
Aprepitant	Emend	Merck	9/27/2002	3/26/2003	
Arsenic trioxide	Trisenox Vidaza	Cell Therapeutics	3/28/2000	9/25/2000	
Azacitidine		Pharmion	12/29/2003	5/19/2004	
Bog, live	Pacis	Biochern Pharma	4/21/1995		
Bevacizumab	Avastin	Genentech	9/30/2003	2/26/2004	
Bexarotene	Targretin	Ligand	6/23/1999	12/29/1999	
Bicalutamide	Casodex	Zeneca	9/14/1994	10/4/1995	
Bortezomib	Velcade	Milennium	1/21/2003	5/13/2003	
Capecitabine	Xeloda	Roche	10/31/1997	4/30/1998	
Cetuximab	Erbitux	Inclone	8/14/2003	2/12/2004	
Cladribine	Leustatin	Ortho	12/31/1991	2/26/1993	
Clofarabine	Clolar	Genzyme	3/30/2004	12/28/2004	
Denileukin diftotox	Ontak	Ligand Pharmaceuticals	12/9/1997	2/5/1999	
Dexrazoxane	Zinecard	Pharmacia	2/10/1992	5/26/1995	
Docetaxel	Taxotere	Rhone-Poulenc Rorer	7/27/1994	5/14/1996	
Dolasetron mesylate	Anzemet	Hoechst Marion Roussel	9/29/1995	9/11/1997	
Dutasteride	Avodart	Glaxo Wellcome	12/21/2000	11/20/2001	
Epirubicin	Ellence	Pharmacia & Upjohn	12/15/1998	9/15/1999	
Erlotinib	Tarceva	Osi/Genentech	7/30/2004	11/18/2004	
Exemestane	Aromasin	Pharmacia & Upjohn	12/21/1998	10/21/1999	
Finastorido	Proscar	Marck	4/15/1991	6/19/1992	
Fludarabine phosphate	Fludara	Berlex	11/24/1989	4/18/1991	
Fulvestrant	Faslodex	Astrazeneca	3/28/2001	4/25/2002	
Gefitinib	iressa	Astrazeneca	8/5/2002	5/5/2003	
Gerncitabine hydrochloride	German	Lilly	2/2/1995	5/15/1995	
Gerntuzumab ozogarnicin	Mylotarg	Wyeth-Ayerst	10/29/1999	5/17/2000	
Granisetron hydrochloride	Kytril	Smithkline Beecham	4/14/1992	12/29/1993	
Ibritumomab tiuxetan	Zevalin	ldec	11/1/2000	2/19/2002	
			8/31/1989	9/27/1990	
Idarubicin hydrochloride Imatinib mesylate	Idamycin Gleevec	Adria Labs Novartis	2/27/2001	5/10/2001	
	Camptosar		12/28/1995	6/14/1995	
Irinotecan hydrochloride		Pharmacia & Upjohn			
Lenalidomide	Revlimid	Celgene	4/7/2005	12/27/2005	
Letrozole	Fernara	Novartis	7/25/1996	7/25/1997	
Levamisole hydrochloride	Ergamisol	Janssen Charles Part & Crucial	11/1/1989	6/18/1990	
Masoprocol cream, 10%	Actinex	Chemex/Reed & Carnick	4/10/1989	9/4/1992	
Nelarabine	Arranon	Glaxosmithkline	4/29/2005	10/28/2005	
Nilutamide	Nilandron	Hoechst Marion Roussel	3/7/1994	9/19/1996	
Oxaliplatin	Eloxatin	Sanofi	6/24/2002	8/9/2002	
Paditaxel	Taxol	Bristol-Myers Squibb	7/22/1992	12/29/1992	
Palifermin (kgf)	Kepivance	Amgen	6/24/2004	12/15/2004	
Palonosetron	Aloxi	Helsinn Healthcare	9/27/2002	7/25/2003	
Pegaspargase	Oncospar	Enzon	1/1/1991	2/1/1994	
Pernetrexed	Alimta	Eli Lilly	9/30/2003	2/4/2004	
Pentostatin	Nipent	Warner-Lambert	2/11/1991	10/11/1991	
Porfimer	Photofrin	Qlt	4/13/1994	12/27/1995	
Rasburicase	Elitek	Sanofi-Synthelabo	12/16/1999	7/12/2002	
Rituximab	Rituxan	Genentech	2/28/1997	11/26/1997	
Samarium sm 153 lexidronam	Quadramet	Cytogen	6/13/1995	3/28/1997	
Sorafenib	Nexavar	Bayer/Onyx	7/8/2005	12/20/2005	
Ternozolomide	Ternodar	Schering-Plough	8/13/1998	8/11/1999	
Teniposide	Vumon	Bristol-Myers Squibb	9/28/1990	7/14/1992	
Topotecan hydrochloride	Hycamtin	Smithkline Beecham	12/22/1995	5/28/1996	
Toremifene citrate	Fareston	Orion/Schering	1/3/1995	5/29/1997	
Tositumomab-i131	Bexxar	Corixa	9/15/2000	6/27/2003	
Trastuzumab	Herceptin	Genentech	5/4/1998	9/25/1998	
Triptorelin parnoate	Trelstar Depot	Pharmacia	6/26/1996	6/15/2000	
Valrubicin	Valstar	Anthra Pharmaceuticals	12/31/1997	9/25/1998	
Vinorelbine tartrate	Navelbine	Burroughs Wellcome	8/27/1993	12/23/1994	
Zoledronic acid	Zometa	Novartis	12/21/1999	8/20/2001	

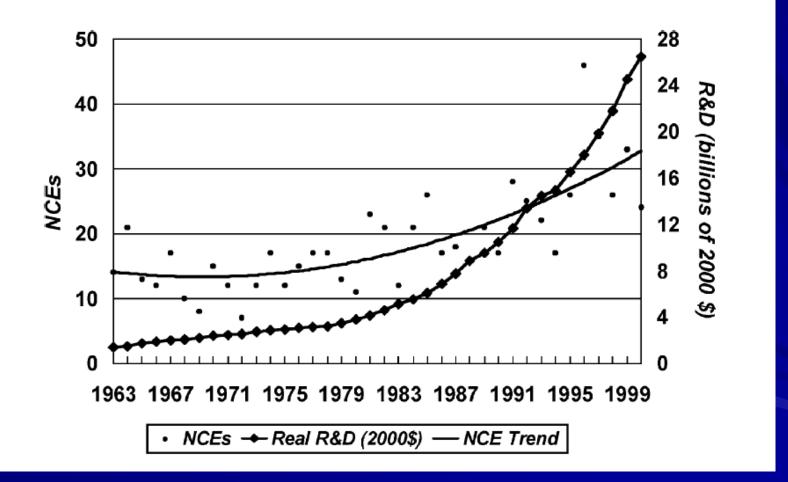
Abbreviation: NDA, new drug application.

The Drug Development Process: Attrition


The Drug Development Process: Time

Clinical phase transition probabilities for investigational oncology and all compounds for the 20 largest firms by pharmaceutical sales for compounds that first entered clinical testing during 1993-2002

DiMasi JA, JCO, 25:209, 2007


The Drug Development Process: Time

Mean clinical development and regulatory approval times for new oncology and other therapeutic molecular entities approved by the US Food and Drug Administration from 1990 to 2005

DiMasi JA, JCO, 25:209, 2007

The Drug Development Process: Money

DiMasi JA, J Health Economics, 22:151, 2003

The Drug Development Process: Money

EXHIBIT 5

Probability Of Market Entry, Durations, And Costs For New Drugs, By Disorder And Primary Indication

			Entry probability (%)		Duration (months)					
	Disorder	N	Phase II	Phase III	Approval	Phase I	Phase II	Phase III	Cost (\$)	
	Blood Cardiovascular	163 280	60 69	57 42	25 22	18 14	32 35	33 30	906 887	
Cancer	681	78		46	20	21	30	29	1	,042
	Musculoskeletal Neurological Antiparasitic Respiratory Sensory	134 192 20 165 53	73 73 100 68 88	41 47 67 31 60	22 22 53 16 40	19 20 18 18 11	39 39 33 30 44	30 32 13 36 30	946 1,016 454 1,134 648	
	Primary indication									
	Alzheimer's disease Rheumatoid arthritis Asthma Breast cancer HIV/AIDS	46 51 74 54 89	65 91 81 96 83	46 33 36 58 56	25 23 26 44 44	17 18 18 17 22	37 36 33 37 22	18 39 31 37 19	903 936 740 610 479	

SOURCE: Authors' calculations.

NOTES: Phases are for human clinical trials. New drug application (NDA) durations are as for the average drug. Cost is the total expected capitalized cost per new drug (in millions of 2000 dollars).

Prerequisites for Therapeutic Studies

Drug development process What do you need to know before going into the clinic?

- The target
- The drug
- Efficacy studies
- Safety studies
- Biomarker assays

The Target

- Biologically plausible: evidence that the target is important
 - Effects of knock-in/knock-out experiments
 - Role in pathogenesis of the disease
 E.g. Bcr-Abl, c-KIT, VHL
 - Expression in clinical specimens
 Which cancers, what percentage, what pattern
 - Prognostic/predictive
 - Previously successful drugging of target/pathway

The Target

 Can be known and important but not specifically relevant to cancer biology
 – Microtubules

May not be known

- Mechanism of action was imprecisely known for many currently used chemotherapy agents
- High-throughput screening of natural compounds for cytotoxic/cytostatic activity

The Target

Impacts on trial design -Go/No Go Potentially worthwhile to take forward? Well defined biology Me too target - Patient population All comers vs. enriched for tumour or target Resistant vs. naive populations

The Drug

Production

- GMP (Good Manufacturing Practise)
 - Minimum set of standards for manufacturing
- Sufficient quantities, practical dosage forms

Chemistry

- Chemical class of the agent
 - E.g. Small molecule, antibody, antisense, peptides, natural product, analogue
 - Implications for preclinical testing
 - Toxicity
 - Efficacy
- Formulation issues

The Drug

Absorption

- Oral, IV
- Distribution
 - Sites of action
 - Tissue concentrations: reservoirs, blood brain barrier
- Metabolism and Excretion
 - CYP enzymes, metabolites, route/organs of excretion

Pharmacokinetic profile

- Maximum concentration (C_{MAX}), Exposure (AUC), Half-life (blood, tissue), Distribution
- Accumulation and multiple dose effects
- PK-Toxicity associations
- PK-Efficacy associations

The Drug

Impacts on trial design

- Route and method of administration
- Schedule
- Eligibility criteria
 - Renal and hepatic function
- Concomitant medications
- Selection of RP2D
 - MTD 🖉
 - PK
 - Efficacy

Efficacy Studies

- Will it work? Does the agent effect the target?
 - in silica, in vitro, in vivo
 - Target/pathway: expression, phosphorylation
 - Downstream effect: apoptosis, angiogenesis, proliferation
 - Dose/plasma level vs. target/pathway inhibition vs. downstream effects
 - Compare to other agents especially if analogue or similar mechanism of action
 - Combination studies

Efficacy Studies

In vitro

- Broad array of well characterized cell lines (e.g. US NCI 60-cell line panel)
- Determine concentration and exposure effects (IC50)
 - Proliferation (e.g. colony forming assay)
 - Viability (e.g. MTT assay)
- Explore mechanisms of resistance

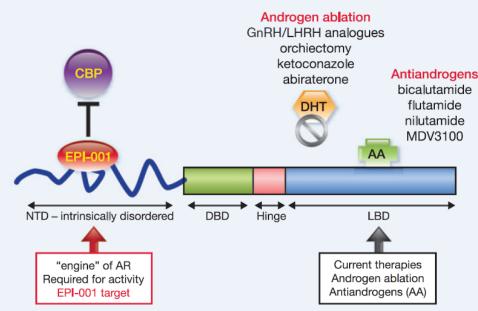
In Vivo Models/Parameters

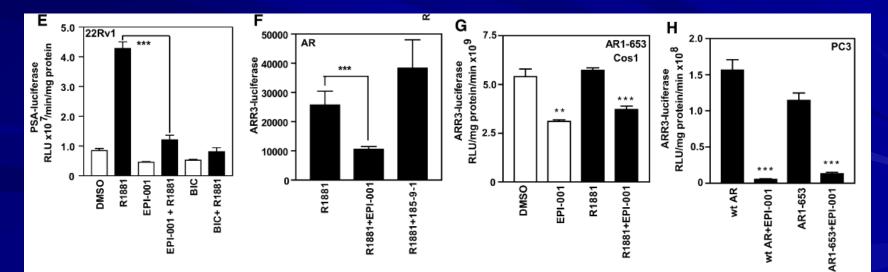
Parameter	Variables
Murine host	Immune competent mouse Immune deficient mouse (nude or SCID mouse) Transgenic mouse
Type of Tumour	Allograft cell line Human Xenograft cell line Spontaneous (e.g. in transgenic mouse)
Tumour Profile	Characterised with respect to key targets Not characterised
Tumour location	Subcutaneous Intraperitoneal Orthotopic Subrenal capsule Hollow fibre
Drug route of administration	Oral Intravenous Intraperitoneal Intratumoural

In Vivo Models/Parameters

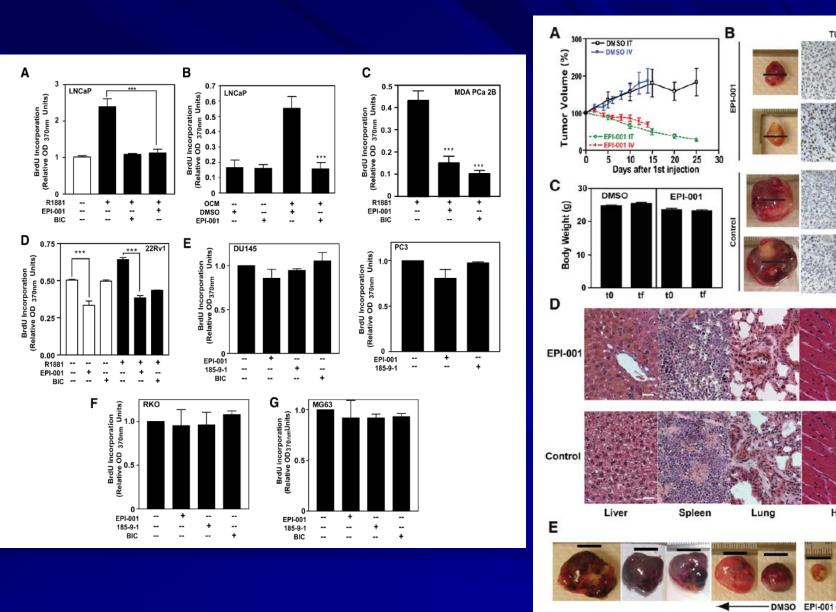
Parameter	Variables
Drug schedule	Continuous (daily) Single dose Intermittent (e.g. days 1, 5, 9) Repeat dose (e.g. days 1-5)
Drug Dose	Single or multiple dose levels Include MTD for each schedule or other doses
Timing of drug administration	At same time as tumour implantation After implanted tumour is established/palpable After implanted tumour has micrometastases After implanted tumour has macrometastases After resection of implanted tumour ("adjuvant")
Measures of efficacy	Tumour regression Tumour growth delay (%T/C) Animal survival Animal cures (or proportion long term survival)

Efficacy: General Considerations


- No mandated studies
 - Up to the company and investigators
- Not predictive of success
 - Immortal, stable, homogenous, rapidly proliferating
 - But a high negative predictive value
- Want to have:
 - Multiple xenograft models (>2)
 - Models that establish the tumour +/- metastases prior to treatment
 - Models that use IV or PO administration
 - Dose response effects: plasma level-target-tumour
 - Comparisons, combinations


Efficacy Studies

Impact on trial design


 Go/No Go:
 Interesting enough to take forward?
 Best compound to take forward?
 Better than current standard?
 Drug combinations
 Tumour types

An Example...

MD Sadar, Cancer Res 71: 1208, 2011; RJ Andersen, Cancer Cell 17:535, 2010

MD Sadar, Cancer Res 71: 1208, 2011; RJ Andersen, Cancer Cell 17:535, 2010

TUNEL

Heart

Kidney

Ki67

The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH)

Previously major variations in the requirements for starting human clinical trials between regions

ICH guidelines

- Brings together health regulatory authorities from USA, Europe, Japan
- Objective: economical use of human, animal and material resources, and the elimination of unnecessary delay in the global development and availability of new medicines whilst maintaining safeguards on quality, safety and efficacy, and regulatory obligations to protect public health

http://www.ich.org/cache/compo/276-254-1.html

Required Toxicology

Type of	Requirements
toxicology	
Single Dose	 2 species: rodent & non-rodent
	Clinical formulation
	Several doses studied
	 Determine toxicity and organ effects
	 NOAEL, LD10
	 PK for relationship to exposure and effects
	 Species specific if required
	Target
	Toxic effects
Repeat dose	 2 species: rodent & non-rodent
	 Clinical formulation, dose and schedule
	Several dose levels
	 Duration of treatment same as planned treatment
	duration in clinic
	 Determine highest doses that can be safely
	administered, organ effects, severity and reversibility
	Species specific if required

Required Toxicology

Type of toxicology	Requirements
Chronic Toxicity	 2 species: rodent and non-rodent Clinical formulation, dose and schedule Duration of treatment: Rodents: 6 months Non-rodents: 9-12 months Determine chronic or late effects of treatment and their severity, reversibility May not be necessary prior to phase I
Safety pharmacology	 Evaluation for specific major organ effects Test system depends on organ system of concern or interest. Basic battery: cardiovascular, respiratory, CNS
Genotoxicity	 In vitro tests for mutations and chromosomal damage from the experimental agent.
Local toxicity	Assessment of local tolerance using routes relevant to method of administration

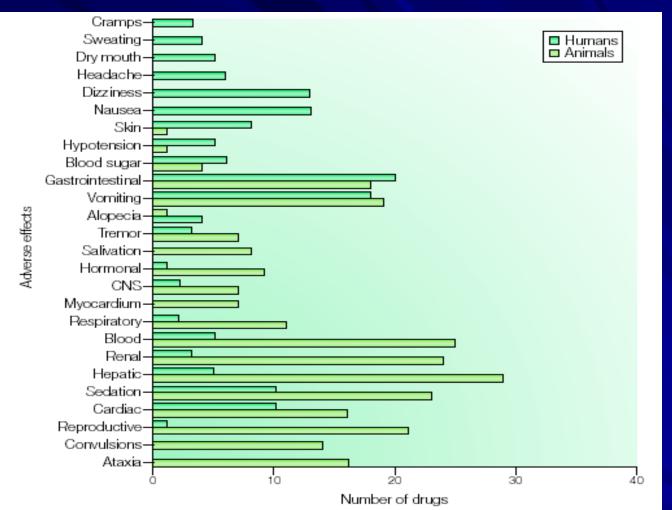


Figure 1 | Animal and human toxicities of 45 drugs assessed by the Committee on Safety of Medicines in the United Kingdom during the eight or nine months prior to publication in 1978 (REF. 11). Data are for drugs of diverse therapeutic classes, including several cardiovascular and central nervous system drugs but only one anticancer agent. The six uppermost adverse effects were observed in humans but not in animals; the two adverse effects at the bottom of the graph were observed in animals but not in humans. For most adverse effects there is a degree of over- or under-prediction. CNS, central nervous system.

Greaves, Nature Drug Discovery, 2003

Toxicology Studies

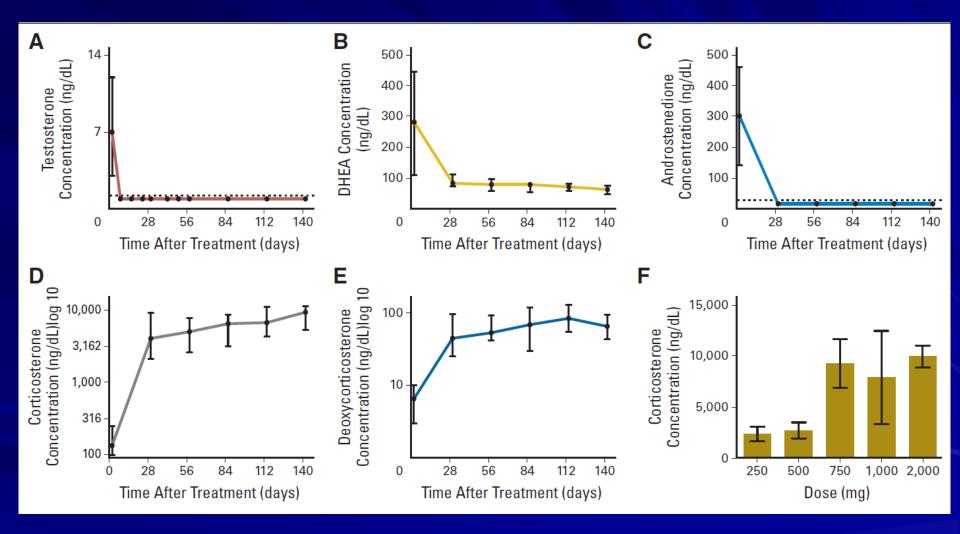
Impact on trial design Potential for toxicity in the clinical study Therapeutic index Eligibility criteria Safety monitoring Additional safety testing (ECG QT prolongation) Selection of starting dose 1/10th LD10 in rodents 1/3-1/6 the TDL (Toxic Dose Low) in most sensitive species Schedule and administration

Biomarker

 Factor that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention

Is it "valid"?

- Analytical validation: does the assay measure what its supposed to measure in a reproducible and accurate fashion?
- Clinical qualification: process of linking a biomarker with biological processes and clinical endpoints
- Often initially developed in research laboratories under ideal conditions with ideal specimens. Clinical trial situation more complex:
 - Multi-centre, multi-personnel
 - Collection, handling and storage conditions
 - Practical issues: e.g. repeated fresh tissue biopsy

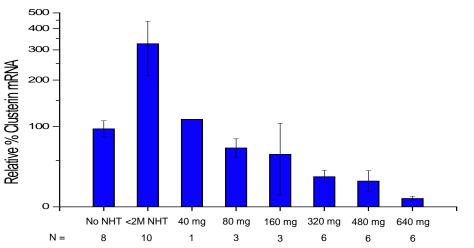

Biomarkers in clinical trials

- Proof of principal biologic activity on target in a patient
- Optimization of dose and schedule (vs. MTD or PK)
- Predictive marker for selection/stratification
- Surrogate endpoint of clinical benefit

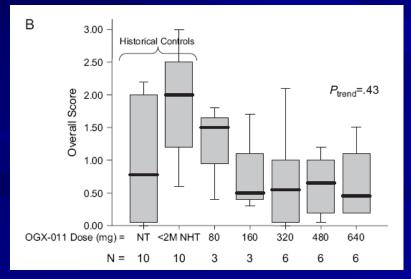
Considerations Assay performance Accuracy, reproducibility Qualitative vs. quantitative Limits of detection Handling processes optimized and characterized Relationship between biomarker assay vs. dose/PK vs. anti-tumour efficacy - Time course: duration, recovery - Tumour vs. other tissues

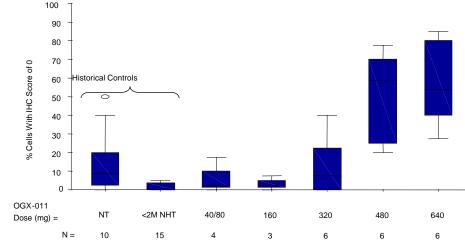
Impact on clinical trial design - To do or not to do? Will it provide useful information? Increased complexity and cost Limited patient numbers Assay performance Selection of patients – Timing of studies - Tissues to be sampled Dose levels to include All dose levels vs. 1 or 2 dose levels

Example: Simple

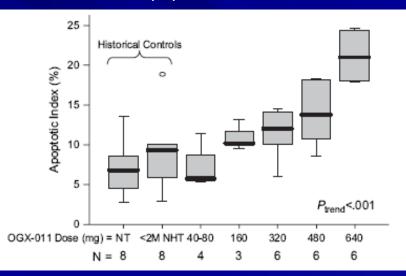


Attard, J Clin Oncol, 2008


Example: Complex


Inhibition of Clusterin mRNA: QRT-PCR

Inhibition of Clusterin Protein: IHC Score=0



Inhibition of Clusterin Protein: IHC Score

Apoptosis Index

Chi, J Natl Cancer Inst, 2005

Investigator's Brochure

Major Headings	Details/content
Summary	Highlight of significant physical, chemical pharmaceutical, pharmacological, toxicological, pharmacokinetic and clinical information
Introduction	Summary of chemical name, active ingredients, pharmacological class of drug, rationale for performing research and likely indications. Include at the end a summary of the approach to the clinical evaluation
Physical, Chemical, Pharmaceutical properties and formulation	
Non-Clinical Studies	Pharmacology: efficacy and mechanistic studies Other studies: e.g. biomarker development Pharmacokinetics and product metabolism Relationship of PK to efficacy and toxicological findings Toxicology
Effects in Humans (If available)	Pharmacokinetics and metabolism in humans Safety and Efficacy Marketing experience
Summary of Data	Guidance for the investigator
References	Publications and Reports

Ready to go!

- 1. Understanding of the drug development process
- 2. Understand the importance of considering preclinical data for protocol design
- 3. Understand the preclinical evaluation of novel therapeutics for efficacy, toxicology, biomarker development
- 4. Understand the regulatory requirements required to support phase I studies