Phase II Cancer Trials: When and How

NCIC CTG Course for New Investigators August 9-12, 2011

Learning Objectives

At the end of the session the participant should be able to

- Define the objectives of "screening" vs. "definitive" trials
- Describe the possible endpoints for phase II screening trials
- Understand basic concepts of phase II design including:
 - Non-randomized two-stage designs
 - Ha, Ho, alpha and beta errors in sample size determination
 - Types of randomized phase II design and their possible uses
- Understand the role of correlative studies within phase II screening trials
- Understand some of the controversial aspects of phase II designs for trials of molecular targeted agents.

Phase II Trials: Outline

- Role of phase II trials
- Objectives
- Endpoints
- Patient Population
- Design

NCIC CTG

GEC NCIC

- Special considerations:
 - Targeted
 - Randomized phase II trials
 - Correlative studies

Translation: From Laboratory Hypothesis to New Therapy

Examples: two new agents

<u>Erlotinib</u>

- EGFR tyrosine kinase inhibitor
- Oral phase I trial:
 - 150 mg po daily tolerable
 - toxicities: rash, diarrhea
- Question:
 - Does it show activity in <u>ovarian cancer</u>, a disease with high frequency of EGFR overexpression?

<u>CCI-779</u>

- mTOR inhibitor: theoretically of interest when PTEN loss
- IV phase I trial:
 - 25 mg IV weekly tolerable
 - toxicities : rash, mucositis
- Question:
 - Does it show activity in <u>endometrial cancer</u>, a disease with high frequency of PTEN mutation?

To Demonstrate Efficacy

- <u>Screening trials</u> *does agent merit more study*?
 - Phase II studies
 - "Intermediate" endpoints (e.g. objective response)
- <u>Definitive trials</u> should this agent be adopted into practice?
 - Phase III studies
 - Definitive, clinically meaningful endpoints (e.g. survival)

Objectives of Phase II Trials

- Primary:
 - <u>To estimate level of anti-tumour activity</u> of an agent or regimen in a given tumour type
- Secondary
 - To provide (further) information on toxicity
 - If applicable and possible, to generate hypotheses about relationship of features of drug target in tumours and response (or progression).

What are features of optimal endpoint for a screening trial?

- 1. Measures an effect on tumour
- 2. Standard definition of "effect"
- 3. Unlikely seen as part of natural history
- 4. Relatively early event
- 5. Experience shows *it can reliably identify drugs active in phase III*

Phase II endpoints: Options

- 1. Objective response (e.g. RECIST)
- 2. Minor response
- 3. Proportion non-progressive (non-PD rate)
- 4. Progression free survival
- 5. Tumour marker
- 6. Other biomarker

GEC NCIC

- 7. Functional Imaging
- 8. Some measure of "area under the curve" of maximal % change in tumour size.

Traditional Phase II endpoint: Objective Response

- Using this endpoint in *single agent* trials:
 - Does <u>not</u> require randomized design (since tumour shrinkage only rarely spontaneous)
 - Has been reasonably successful in identifying drugs that can improve survival

Standard Response Criteria

Varies by tumour type. Examples:

- Most Solid Tumours:
 - Objective response (e.g. RECIST 1.1)
- *Some* Solid Tumours:
 - CA125 response (Ovarian cancer)
 - PSA response (Prostate cancer)
 - MacDonald Criteria (Brain tumours)
- Hematololgical malignancies:
 - Lymphoma
 - IWG AML criteria

RECIST version 1.1 (<u>Response Evaluation Criteria in Solid</u> <u>Tumors</u>)

EUROPEAN JOURNAL OF CANCER 45 (2009) 228-247

New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1)

E.A. Eisenhauer^{a,*}, P. Therasse^b, J. Bogaerts^c, L.H. Schwartz^d, D. Sargent^e, R. Ford^f, J. Dancey^g, S. Arbuck^h, S. Gwytherⁱ, M. Mooney^g, L. Rubinstein^g, L. Shankar^g, L. Dodd^g, R. Kaplan^j, D. Lacombe^c, J. Verweij^k

RECIST 1.1: Measuring Disease

- Measurable lesion:
 - <u>></u> 10 mm longest diameter on CT scan (assuming slice thickness 5 mm)
 - \geq 15 mm shortest diameter for lymph node
- Up to <u>5</u> largest measurable lesions assessed (maximum <u>2</u> per organ site)
- <u>Sum of diameters</u>

RECIST 1.1: Defining Response

- Complete Response (CR):
 - Disappearance of all disease
- Partial Response (PR)
 - > 30% decrease in sum of diameters
- Progression (PD)
 - > 20% increase in sum of diameters <u>and</u> at least 5 mm absolute increase
- Stable disease (SD)
 - Neither PD nor PR.
- CR, PR must be confirmed *if response primary endpoint*. SD has protocol defined "minimum" duration

Example of Marker Response: CA125 Response

- Gynecologic Cancer Intergroup criteria*:
 - Patient must have one baseline elevated sample (at least 2x ULN)
 - CA125 response if:
 - 50% fall from baseline
 - Confirmed by repeat sample at least 28 days later

*Rustin GJS et al J Natl Cancer Inst 96:487, 2004

Patient Population

- Patients to be enrolled in phase II trial should have characteristics which:
 - Allow assessment of primary endpoint in patients with disease of interest
 - Maximize the chance of seeing activity
 - Take into account drug toxicity and pharmacology

Examples: Population

CCI-779: Endometrium

- Measurable disease
- Performance status (ECOG) 0,1,2.

NCIC CTG

GEC NCIC

• No prior chemotherapy. One hormonal treatment allowed.

<u>Erlotinib: Ovary</u>

- Measurable disease;
 +/- CA125 > 2x ULN
- Able to swallow; no bowel obstruction
- One prior chemo regimen. Two cohorts will be studied:
 - > 6 mo
 - $< 6 \, \text{mo}$

Design

- Design should do two things:
 - Allow identification of <u>truly active drug</u> (i.e. limit the risk of a false negative result)
 - Limit the number of patients treated in case the drug is <u>truly inactive</u>.

"Classic" Single Arm Design

- Multistage (usually 2-stage) nonrandomized study.
- Sample size and stopping rule based on the level of activity (response rate) of interest (Ha) and the levels of the 2 key error rates:
 - The α error: false positive result
 - The β error: false negative result --- mostly we want to *minimize* this.

Statistical Design/Sample Size

- Several methods available:
 - Simon, Fleming, Gehan....
- Consult with statistician
- In general:

<u>Smaller:</u> Response rate (Ha) α value β value

Examples: Design

CCI-779: Endometrium

Ha <u>**20%**</u>

Ho <u>5%</u>

NCIC CTG

GEC NCIC

Enter 15 patients

- Close trial if no responses
- If <u>></u> 1 response: enroll 15 additional pts

If \geq 4 /30 pts respond conclude agent is of interest for further study $\alpha = 0.058$; 1- $\beta = 0.87$

<u>Erlotinib: Pt. Sens. Ovary</u>

Ha <u>30%</u> Ho <u>5%</u>

Enter 8 patients

- Close trial if no responses
- If <u>></u> 1 response: enroll 7 additional pts

If \geq 3 /15 pts respond conclude agent is of interest for further study

$$\alpha = 0.03; 1 - \beta = 0.85$$

Platinum resistant: as at left

Reporting Results

- Account for <u>all patients entered</u>
- Describe:
 - Patient characteristics
 - Treatment delivery
 - Toxic effects
 - No. pts with: CR, PR, SD, PD
 - Response rate: based on all <u>eligible</u> patients (do not inflate response rate by reducing denominator)
 - Response Duration
 - Outcome of any "special" endpoint e.g. molecular marker

After Phase II is Complete:

- If a minimum level of activity seen <u>further</u> <u>evaluation warranted</u>:
 - Confirmatory phase II
 - Combination phase I/II may be randomized
 - Randomized single agent studies
- If no responses, drug concluded to be of <u>no</u> <u>interest for further study</u>

Issues with "Traditional" Phase II

- What about...
 - <u>Targeted anti-cancer drugs</u> (so called noncytotoxic agents) that may not cause tumour shrinkage in animals?

Era of Molecular Targeted Therapy: Phase II Trial Challenges

- Is response a realistic endpoint with molecular targeted agents?
- If not:
 - What are options of alternative endpoints?
 - What implications do use of non-response endpoints have on design?
- Should population be "enriched" for target expression?

Phase II endpoints: Options

- 1. Objective response (e.g. RECIST)
- 2. Minor response
- 3. Proportion non-progressive (non-PD rate)
- 4. Progression free survival
- 5. Tumour marker
- 6. Other biomarker
- 7. Functional Imaging
- 8. Some measure of "area under the curve" of maximal % change in tumour size.

SU11248 Maximum % Reduction of Target Lesions by Patient

Phase II endpoints:OptionsRequire

randomized

designs

- 1. Objective response (e.g. R
- 2. Minor response
- 3. Proportion non-progressive (non-PD rate)
- 4. Progression free survival
- 5. Tumour marker
- 6. Other biomarker

GEC NCIC

- 7. Functional Imaging
- 8. Some measure of "area under the curve" of maximal % change in tumour size.

What alternative endpoints/designs have been used in Phase II screening trials of targeted agents?

- 19 targeted agents with single agent phase II reports in one of 6 common tumour types
- Describe endpoints, design used and whether results related to eventual phase III success
- Total: 89 trials found

NCIC CTG

GEC NCIC

El-Maraghi, Eisenhauer, JCO, 2008

Agents/Targets: Phase II Review

Target	Agent	#Reports	Target	Agent	#Reports
Angiogen- esis	ZD6474 SU5416 Bevacizumab SU11248	1 2 2 2	EGFR/ HER2	ZD1839 OSI-774 C225 trastuzumab	14 5 3 8
PKC alpha	ISIS 3521	5	ckit/abl	STI571	7
raf kinase	BAY 43-9006 ISIS 5132	1 4	MMP	Marimastat BMS-275291	1 1
DNA MTase	MG98	1	Farnesyl	R115777	5
MEK	CI-1040	1	trans- ferase	SCH66336	1
mTOR	CCI-779	3	10,000		

Results: Study Outcomes by Trial

Tumour Type	Number of trials with objective response rate as shown (%)				
	Not reported	0	>0 - <u><</u> 10	>10- <u><</u> 20	>20
Breast	0	6	5	7	3
Colorectal	0	8	3	0	0
Lung	2	10	4	3	3
Ovary	0	3	3	0	0
Prostate	7	7	0	0	0
Renal	4	4	4	1	2
TOTAL (%)	13 (15)	38 (43)	19 (21)	11 (12)	8 (9)

Summary and Comparison of Cytotoxics with Targeted Agents Reviewed

Response rates (all trials)	No. Targeted Agents No. Approved for ANY Tumour type Included in		%		
<pre>p = .005 (excluding gefitinib) p < .0001 (including gefitinib) 1(</pre>					
>20	1	1	100		
TOTAL	19	7 (8)	<i>32</i>		

Randomized Phase II Designs

- Small sample size trials which are not adequately powered to compare outcomes.
- Endpoints can be response or other (e.g. PFS) depending on design and question being addressed
- Useful in several circumstances....

Examples: Randomized Phase II Designs

• <u>"Pick the Winner"</u> Two schedules of a new drug look interesting. Randomized trial to select the schedule most likely to be best:

e.g. IND.163

Examples: Randomized Phase II Designs

• <u>Identify early evidence of effect:</u> Standard vs. experimental regimen to identify sufficient activity to merit phase III.

e.g. BR.20

Patients: SCLC, Completed Rx with CR, PR

<u>Primary endpoint:</u> 2.5 mo improvement in PFS <u>Statistics:</u> power 80%, one-sided alpha 0.1

Examples: Randomized Phase II Designs

 <u>Use control arm to interpret results:</u> Control arm serves to help *interpretation of results* in experimental arm
 e.g. IND.165

Primary endpoint: PSA response rate Statistics:

- -H0 < 40%, H1 > 60%, a = 0.1, β = 0.1
- >20/40 pts in OGX-011 Arm with PSA resp of interest

Correlative Biology/Enrichment

- <u>When</u> to enrich for molecularly defined subset?
- What to enrich for?
- Depends on how robust the preclinical data is on molecular predictor
- In <u>all cases</u>: need tumour collection from <u>all</u> patients

An Easy Example

More Common Setting

- Agent affects normal variant of target(s)
- Most drugs affect several targets
- Phase II trial: opportunity to develop/refine hypotheses about which tumour subsets are most sensitive (or least insensitive)
- May be challenging look for altered expression, mutations, amplifications in pathway and in salvage pathway

Example:

Phase II Single Agent Trial mTOR inhibitor in Endometrial ca

PTEN IHC positive = normal

Negative = loss of PTEN expression

IND.160 A (Temsirolimus Endometrium)

Response	PTEN	PTEN
	+ve	-ve
PR	3	1
SD	3	14
PD	3	2
IN		3
Total	9	20

No evidence PTEN loss <u>needed</u> for PR *Similar results pmTOR, pS6k*

PTEN IHC positive = normal

Negative = loss of PTEN expression

Mutational Analysis

Best Response Association Tested	Mutation type	P-value
PR vs. other	Any	1.0
	PIK3CA	0.4
	PIK3CA or Akt	1.0
PR + SD vs. other	Any	0.3
	PIK3CA	0.4
	PIK3CA or Akt	0.7
PD vs. other	Any	0.7
	PIK3CA	0.7
	PIK3CA or Akt	0.7

Lesson: It is challenging to find "THE" biomarker

- Phase II can be <u>place to start</u> but seldom where the story finishes
- Sample size is relatively small to do much more than generate/refine hypotheses

Summary: Phase II Trials

- <u>Goal</u>: Screen new agent/combination for activity.
- <u>Primary Endpoints</u>:
 - Single agent/single arm: Objective response
 - Randomized (single agent or combo): response or PFS
- <u>Design</u>:
 - Depends if single arm or randomized
 - Should minimize possibility of false negative outcome
- <u>Correlative studies</u>: Should be routine
 - At minimum: to generate hypotheses about selection biomarker
- Drugs active in phase II: Need further evaluation