New Investigator Clinical Trial Section 2: Statistics for Clinical Trials Part 1: Basics of Phase III Trial Design

Bingshu Chen

Outlines

- Randomized Clinical Trials (Phase III)
- Blindness
- Endpoints
- Sample Size
- Non-inferiority Trials
- Summary

1. Randomized Clinical Trial

- Objectives
 - Study efficacy of an intervention in a given <u>study</u> <u>population</u>
 - $\boldsymbol{-}$ Need an intervention group and a control group
 - Method of selection: Randomization
- Randomized Clinical Trials
 - Cross-over design
 - Factorial design
 - Large simple clinical trial
 - Non-inferiority trial (Study of equivalency)

-		

Trial Design - II

- Cross-over design
 - Each participant to serve as his or her own control
 - Receives either intervention or control in the first period and the alternative in the succeeding period
 - The order is randomized
 - Assumption: no carry over effect, which is inappropriate in many clinical trials
 - e.g. cured patients may not return to the initial state

Trial Design – III

- Factorial design
 - Evaluate two or more interventions compared with control in a single trial, e.g. 2x2 design:

	Intervention A	Control
Intervention B	A and B	B only
Control	A only	Control

- It is possible to leave some of the cells empty
- Sample size depends on the *interaction*
- Impact on recruitment and compliance

Trial Design - IV

- Large simple design
 - Uncover modest benefits of intervention
 - Short term
 - Easily to implement in a large population
 - Unbiased allocation of participants
 - Unbiased assessment of the outcomes
 - No for trials with
 - Complex interventions
 - Complex Outcomes

-			
	<u> </u>	 <u></u>	<u></u>

Randomization - I

- Randomized Clinical Trials (RCT)
 - Assign participants to control or treatment group using formal randomization procedure
- Advantages of RCT
 - Ensure balance for all baseline factors
 - Remove potential <u>bias</u>
 - Produce comparable groups
 - Guarantee validity of statistical tests

Randomization - II

- Method of Randomization
 - Simple Randomization
 - Toss a coin or use a computer-based algorithm
 - Not guarantee for balance of important factors
 - Block Randomization
 - e.g. block size 4: AABB, ABAB, ABBA, BBAA BABA BAAB
 - Balance between treatment groups
 - Not guarantee for balance of important factors
 - Stratified Block Randomization
 - Dynamic randomization/minimization

Randomization - III

- Stratified Block Randomization
 - Identify important stratification factors
 - eg. Age, Gender, Centre, etc
 - Ensure treatments are balanced for a few preselected stratification factors
 - Randomly assign treatment group (Block Randomization) within each combination (cell) of stratification factors
 - Risk of not balanced if the number of cell is large

Randomization - IV

- Dynamic Randomization / Minimization
 - Large number of cells
 - Age (3 levels), Gender (2 levels), smoking history (3 levels), centre (5 levels), node status (3 levels): 270 cells
 - For a new subject in a give cell, total number of patients allocated in each treatment group is counted. The subject will be allocated to group with smallest number (coin tossing if tied)
 - Guarantee balance but treatment allocation may be predictable

2. Blindness

- Objective
 - Reduce <u>bias</u>
- Type of Trials
 - Un-blinded trials (open trials)
 - Both the participant and the investigator are aware of the intervention assignment. e. g. lifestyle intervention
 - Single-blind trials
 - Only the investigators are aware of the intervention assignment
 - Double-blind trials

Blindness - II

- Double-blind trials
 - Neither the participants nor the investigators know the intervention assignment.
 - Usually restrict to trials of drug efficacy
 - <u>Bias</u> is reduced (but can't be completely eliminated)
 - An outside body to monitor the data for toxicity and benefit (e.g. DSMC)

-	
-	
-	

Blindness - III

- Special problems in double-blind trials
 - Participants and investigators may try to unblind the medication
 - Consciously
 - Unconsciously
 - Matching of drugs: Tablets or capsules closely resembled one another
 - Coding of drugs: Labeling of individual drug bottles or vials so that the identity of the drug is not disclosed

Blindness - IV

- Ideally, a clinical trial should have double-blind design to avoid potential bias
- If a double-blind design is impossible, use a single-blind approach or other measures to reduce potential bias

3. Endpoints

- Primary Endpoints
 - Most clinically relevant and direct related to primary objective of the trial
 - Base for sample size calculation
 - Analysis to be adjusted for Type I error if there are multiple primary endpoints
- Secondary Endpoints
 - Supportive measurements of effects related to the secondary objective
 - Hypothesis generation
 - No need to adjust trial results for secondary endpoints

-	

Endpoints - II

- Examples of Endpoints
 - Time to event endpoints
 - Overall survival
 - Event free survival
 - · Progression free survival
 - Recurrent free survival
 - Binary endpoints
 - Overall response rate
 - Complete response rate
 - Continuous endpoints
 - Quality of life scores
 - Incremental cost-effectiveness ratios

4. Sample Size

- Objectives
 - Provide an estimate of the needed size of a study
 - Ensure sufficient statistical power to detect clinical meaningful difference between groups
 - Provide adequate levels of significance
 - Parameters for sample size estimation shall be as conservative as possible while still being realistic

Sample Size - II

- Parameters for Sample Size Calculations
 - Specify Type I error (or Significant level)
 - Specify Type II error (or Power)
 - Determine the minimum difference to be detected or of clinical interest (defined by δ)
- Sample size calculations for
 - Continuous endpoint
 - Binary endpoint
 - Time to event endpoint
- Details will be covered in this afternoon's Workshop.

5. Non-inferiority Trials

- Objectives
 - Study of equivalency
 - Test whether a new intervention is as good as an established one
 - Trials with positive control
- Requirements
 - Control or standard treatment must have been shown to be effective (i.e. better than placebo)
 - Similar populations, concomitant therapy and dosage
 - Trials that demonstrated efficacy of the standard shall be recent and properly designed and conducted

Non-inferiority Trials - II

- Other important factors to be considered
 - Frequency and severity of adverse effects
 - Changes in Quality of Life (QoL)
 - Ease of applying the new intervention
 - Cost of the new intervention

Non-inferiority Trials - III

- What is meant by equivalence?
 - Two therapies are identical? Require infinity sample size to test $\delta = 0$
 - New intervention falls sufficiently close to the standard as defined by reasonable boundaries
 - Non-inferiority margin
 - Specify some value, δ , such that interventions with differences that are less than this might be considered equally effective or equivalent

	

Non-inferiority Trials - IV

- Example
 - A recent trial shows that drug A has response rate of 60%, compared with 30% of the placebo
 - Drug B is less expensive and has fewer side effects
 - Drugs A and B are considered to be equivalent if the difference in response rate is less than $\delta{=}10\%$
 - Null hypothesis H_0 : $P_A P_B > \delta$ vs H_a : $P_A P_B < \delta$
 - Calculate sample size such that one can reject H $_0$ with power 80% if the upper 5% confidence interval for the difference of the response rate does not exceed δ (e.g. α = 0.05, power = 80%: N = 594)

Summary

- Define the term randomized clinical trials
- Randomization methods used in clinical trials
- The importance of blindness in clinical trials
- Different endpoints used in clinical trials
- Necessary parameters for sample size calculation
- Difference between superiority and noninferiority trials

Acknowledge

Special Thanks To Dr. Dongsheng Tu For parts of His Clinical Trials Course (Epid 810) Slides
